期刊文献+

轨形上的广群、丛束和周期磁单极定理

GROUPOID,BUNDLE GERBES AND CALORON CORRESPONDENCE ON ORBIFOLD
下载PDF
导出
摘要 证明了每个平凡丛束都是可微广群,将流形上周期磁单极对应推广到轨形上,证明了G主轨丛的回路丛是FréchetLG主丛,并且还在轨形上引入了C×广群、丛束的概念,从而推广了一些流形上的结论. In this paper, we prove that every trivial bundle gerbe is a differentiable groupoid and generalize the ealoron corresponding to orbifolds. We also prove that the loop bundle of a G principle orbibundle is a Frechet LG-principle bundle, and define notions of Cx groupoids, bundle gerbes on orbifolds. There are generalizations of some results on manifolds.
作者 马家骥
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期14-17,共4页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(10971014)
关键词 丛束 轨形 回路丛 可微广群 bundle gerbel orbifold loop bundle differentiable groupoid
  • 相关文献

参考文献10

  • 1Giraud J. Cohomologie non abelienne [ M ]. Berlin:Springei^Verlag, 1971.
  • 2Brylinski J L. Loop spaces, characteristic classes andgeometric quantization(Progress in Mathematics) [M].Boston: Birkhauser Boston Inc.,1993 : 107.
  • 3Murray M K. Bundle gerbes[J]. J London Math Soc,1996,54(2):403.
  • 4Murray M K, Stevenson D. Bundle gerbes: stableisomorphism and local theory [J]. J London Math Soc,2000, 62(3):925.
  • 5Satake I. On a generalization of the notion of manifold[J]. Proceedings of the National Acad emy of Sciences ofthe United States of America,1957,42: 359.
  • 6Hamilton R S. The inverse function theorem of Nash andMoser [J], Bull Am Math Soc New Ser, 1982,7(1) :65.
  • 7Joseph E. Borzellino? Victor Brunsdea The stratifiedstructure of smooth orbifold mappings[M]. Los Alamos :arXiv(0810), 2008:1070.
  • 8Lu G, Wang M Y. The local inverse mapping theorem onBanach orbifolds [J]. Journal of Mathematical Analysisand Applications, 2008,337:919.
  • 9Satake I. The Gauss-Bonnet theorem for V-manifolds[J].Journal of the Mathematical Society of Japan, 1956,9:464.
  • 10Weistein A. Symplectic groupoids and Poisson manifolds[J]. Bulletin (New Series) of the american mathematicalsociety, 1987, 16:1.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部