期刊文献+

云计算环境下改进的能效度量模型 被引量:9

Improved energy-efficiency measurement model for cloud computing
下载PDF
导出
摘要 针对大规模计算的能效问题,提出改进的能效度量模型,通过"能源"和"效率"2种度量来综合评价系统能效.在"能源"方面,考虑计算机、网络和附属设备的能耗;在"效率"方面,考虑CPU、内存、磁盘以及网络的情况.提出的能效度量模型描述了改进后的能效度量的定义和数学表达,通过实验验证了该模型的合理性.基于该度量模型,评估并分析了MapReduce环境中CPU密集型、I/O密集型和交互型计算的能效,总结了MapReduce环境中的能效规律. An energy efficiency measurement model was proposed to address the large-scale computing problem through two metrics: "energy" and "efficiency". As for "energy", the energy consumption of computer, network and affiliated equipments was considered; as for "efficiency", that of CPU, memory, disk and network was considered. The proposed energy efficiency measurement model describes the defini- tion and mathematical expression of the improved energy efficiency measurement, and is proved reasonable through experiments. The energy efficiency of CPU intensive, I/O intensive and interactive computing was evaluated and analyzed based on the measurement model, and the energy efficiency laws in MapReduce environment were summarized.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第1期44-52,共9页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61202088) 辽宁省自然科学基金资助项目(200102059) 中央高校基本科研业务费专项资金资助项目(N110417002)
关键词 云计算 能效 度量模型 MAPREDUCE cloud computing; energy efficiency; measurement model; MapReduce
  • 相关文献

参考文献10

  • 1Gartner Incorporation. Gartner says worldwide cloud serv- ices revenue will grow 21.3 percent in 2009 [EB/OL]. [2012-02- 01]. http;//www, gartner, corn/it/page, jsp? id =920712.
  • 2宋杰,李甜甜,闫振兴,那俊,朱志良.一种云计算环境下的能效模型和度量方法[J].软件学报,2012,23(2):200-214. 被引量:70
  • 3XU Zi-chen, TU Yi-Cheng, WANG Xiao rui. Exploring power-performance tradeoffs in database systems [C]// ICDE 2010. California:IEEE, 2010:485 - 496.
  • 4TSIROGIANNIS D, HARIZOPOULOS S, SHAH M A. Analyzing the energy efficiency of a database server [C] // SIGMOD 2010. Indianapolis, Indiana, USA: ACM, 2010: 231-242.
  • 5BARROSO L A, HOLZLE U. The case for energy-pro- portional computing computer [J]. IEEE Computer, 2007, 40(12): 33-37.
  • 6KUMAR K, I.U Y H. Cloud computing for mobile us ers: can offloading computation save energy? [J]. IEEE Computer, 2010, 43(4) : 51 - 56.
  • 7ORGERIE A C, EVRE L L, GELAS J P. Save Watts in your grid= green strategies for energy-aware frame work in large scale distributed systems [C]// ICPADS 2008. Melbourne: IEEE, 2008:171-178.
  • 8YOUNGE A J, VON LASZEWSKI G, WANG L, et al. Efficient resource management for cloud computing environments [C]// International Green Computing Con- ference. Chicago: IEEE, 2010: 357-364.
  • 9SRIKANTAIAH S, KANSAL A, ZHAO F. Energy a- ware consolidation for cloud computing [C]// Confer- ence on Power Aware Computing and Systems. Berkeley: USENIX Association, 2008: 10.
  • 10ABDELSALAM H S, MALY K, MUKKAMALA R, et al. Analysis of energy efficiency in clouds [C] // Fu- ture Computing, Service Computation, Cognitive, Adap- tive, Content, Patterns, Computation World. Norfolk: IEEE, 2009:416-421.

二级参考文献27

  • 1Chert G, He WB, Liu J, Nath S, Rigas L, Xiao L, Zhao F. Energy-Aware server provisioning and load dispatching for connection- intensive Internet services. In: Crowcroft J, Dahlin M, eds. Proc. of the 5th USENIX Syrup. on Networked Systems Design and Implementation (NSDI). San Francisco: USENIX Association, 2008. 337-350.
  • 2Urgaonkar B, Shenoy PJ, Chandra A, Goyal P, Wood T. Agile dynamic provisioning of multi-tier Internet applications. Trans. on Autonomous and Adaptive Systems, 2008,3(1):1-39. [doi: 10.1145/1342171.1342172].
  • 3Orgerie AC, Lef~vre L, Gelas JP. Save Watts in your grid: Green strategies for energy-aware framework in large scale distributed systems. In: Proc. of the 14th Int'l Conf. on Parallel and Distributed Systems (ICPADS 2008), Melbourne: IEEE, 2008. 171-178. Idol: 10.1109/ICPADS.2008.97].
  • 4IBM proj oct big green, http://www-03.ibm.com/press/us/en/pressrelease/21524.wss.
  • 5Using virtualization to improve data center efficiency, http://www.thegreengrid.org/Global/Content/white-papers/Using- Virtualization-to-Improve-Data-Center-Efficiency.
  • 6Rivoire S, Shah MA, Ranganathan P, Kozyrakis C. JouleSort: A balanced energy-efficiency benchmark. In: Chan CY, Qoi BC, Zhou A, eds. Prec. of the ACM SIGMOD Int'l Conf. on Management of Data. B~ijing: ACM Press, 2007. 365-376. Idol: 10.1145/ 1247480.1247522].
  • 7Bahsoon R. Green cloud: Towards a framework for dynamic self-optimization of power and dependability requirements in green cloud architectures. In: Babar MA, Gorton I, eds. Proe. of the 4th European Conf. on Software Architecture (ECSA 2010). Copenhagen, 2010. 510-514.
  • 8Kumar K, Lu YH. Cloud computing for mobile users: Can offloading computation save energy? IEEE Computer, 2010,43(4): 51-56. [doi: 10.1109/MC.2010.98].
  • 9Kelenyi I, Nurminen JK. CloudTorrent--Energy-Efficient BitTorrent content sharing for mobile devices via cloud services. In: Proc. of the 7th IEEE on Consumer Communications and Networking Conf. (CCNC). 2010. 1-2.
  • 10Elnozahy EN, Kistler M, Rajamony R. Energy-Efficient server clusters. In: Falsafi B, Vijaykumar TN, eds. Proc. of the 2nd Int'l Workshop on Power-Aware Computer Systems (PACS 2002). Cambridge: Springer-Verlag, 2003. 179-197. [doi: 10.1007/3-540- 36612-1_12].

共引文献69

同被引文献80

  • 1HAN Cong-zheng,HARROLD T,ARMOUR S, et al. Green radio: radio techniques to enable energy efficient wireless networks [ J ]. IEEE Communications Magazine: Special Issue on Green Ra- dio Communications, 2010,49(6) :46-55.
  • 2McLAUGHLIN S, GRANT P M, THOMPSON J S, et al. Techniques for improving cellular radio base station energy efficiency[ J]. IEEE Communications Magazine, 2011,18 ( 5 ) : 10-17.
  • 3HAN Tao, ANSARI N. ICE: intelligent cell BrEathing to optimize the utilization of green energy[ J ]. IEEE Communications Letters, 2012,16(6) : 866-869.
  • 4CHEN Hou-chun, FU Huai-lei, LIN P, et al. Energy-Aware trans- mission scheduling in mobile sensor networks [ C]//Proc of IEEE Global Telecommunications Conference. 2011 : 1-5.
  • 5Gaeke BR, Husbands P, Li XS, et al. Memory-intensive benchmarks: IRAM vs. cache-based machines. Proc. International Parallel and Distributed Processing Symposium. IPDPS 2002, Abstracts and CD-ROM. IEEE, 2001.
  • 6Chase JS, Anderson DC, Thakar PN, et al. Managing energy and server resources in hosting centers. ACM SIGOPS Operating Systems Review, ACM, 2001, 35(5): 103-116.
  • 7Snowdon DC, Ruocco S, Heiser G; Power management and dynamic voltage scaling: Myths and facts. 2005.
  • 8Kappiah N, Freeh VW, Lowenthal DK. Just in time dynamic voltage scaling: Exploiting inter-node slack to save energy in MPI programs. Proc. of the 2005 ACM/IEEE Conference on Supercomputing. IEEE Computer Society. 2005.33.
  • 9Ecolnfo 2011. From windows 95 to windows 7. Ecolnfo report.
  • 10Carrera EV, Pinheiro E, Bianchini R. Conserving disk energy in network servers. Proc. of the 17th Annual International Conference on Supercomputing. ACM. 2003.86-97.

引证文献9

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部