期刊文献+

蚁群算法中参数设置对超声回波估计性能的影响 被引量:7

The effects of parameters settings of ant colony algorithm on the performance of ultrasonic echo estimation
原文传递
导出
摘要 针对超声回波参数估计问题存在着耗机时长,估计结果严重依赖于初始值的缺点,本文将蚁群算法应用到超声回波参数估计中,结合超声回波的非线性高斯模型,提出了基于蚁群算法的超声回波参数估计算法,并就蚁群算法在超声回波估计中参数的优化组合设置进行了分析研究.通过数值仿真,在信噪比为10 dB条件下计算了蚁群算法中各参数的不同取值对估计结果的不同影响,包括计算时间、估计精度和算法稳定性,得出了算法中各参数的组合优化设置,给出了最优参数下的超声回波参数估计结果,并通过与其他算法的比较验证了蚁群算法在超声回波参数估计问题中的有效性.该研究有助于提高超声回波估计的精度和算法的稳定性,缩短蚁群算法的计算时间,以达到优化算法性能的目的. The computational time and the estimated results of other algorithms for ultrasonic echoes depend significantly on the initial values. In this investigation, we develop an algorithm based on the ant colony algorithm to estimate ultrasonic signals in term of a nonlinear Gaussian echo model. Fhrthermore, the combinatorial optimization settings of the parameters for the ant colony algorithm are analyzed and investigated. The effect that each parameter has on the estimated results, including the computational time, estimation accuracy, and the stability of the algorithm, are analyzed. Optimal parameter settings are achieved through numerical simulation with an SNR (signal to noise ratio) of 10 dB. The estimated results are given according to tile optimal parameter settings. Compared with other algorithms, the effectiveness of the ant colony algorithm applied to parameter estimation is verified. This investigation contributes to improving the accuracy of estimation of ultrasonic echoes and the stability of the algorithm. The computational time can be reduced effectively and good estimation performance is obtained by the algorithm.
出处 《中国科学:信息科学》 CSCD 2013年第2期243-253,共11页 Scientia Sinica(Informationis)
基金 陕西师范大学研究生培养创新基金(批准号:2012CXS035) 国家自然科学基金(批准号:61102094) 陕西省自然科学基金(批准号:2010JM1008 2012JM1013) 中央高校基本科研业务费专项资金(批准号:GK201102026)资助项目
关键词 高斯回波模型 参数估计 蚁群算法 优化设置 超声检测 Gaussian echo model, parameter estimation, ant colony algorithm, optimization settings, ultrasonic testing
  • 相关文献

参考文献5

二级参考文献29

共引文献210

同被引文献56

  • 1苏明旭,蔡小舒,徐峰,张金磊,赵志军.超声衰减法测量悬浊液中颗粒粒度和浓度[J].声学学报,2004,29(5):440-444. 被引量:52
  • 2冯远静,冯祖仁,彭勤科.一类自适应蚁群算法及其收敛性分析[J].控制理论与应用,2005,22(5):713-717. 被引量:18
  • 3武良丹,张小凤,贺西平.基于模拟退火算法的超声回波参数估计[J].应用声学,2007,26(5):313-317. 被引量:12
  • 4Cirrincione M, Pucci M, Vitale G. Neural MPPT of vari- able-pitch wind generators with induction machines in a wide wind speed range [ J]. IEEE Transactions on Indus- try Applications, 2013, 49 (2) : 942-953.
  • 5Jafarnejadsani H, Pieper J, Ehlers J. Adaptive control of a variable-speed variable-pitch wind turbine using RBF neural network [ A ]. 2012 IEEE Electrical Power and Energy Conference (EPEC) [C]. 2012. 216-222.
  • 6杨剑峰(YangJianfeng).蚁群算法及其应用研究[D].杭州:浙江大学,2007.
  • 7Navidi N, Bavafa M, Hesami S. A new approach for de- signing of pid controller for a linear brushless DC motor with using ant colony search algorithm [ A] Asia-Pacific Power and Energy Engineering Conference [ C ]. 2009. 1-5.
  • 8Hgglund F,Martinsson J, Carlson JE. Model - based estimation of thin multi - layered media usingultrasonic measurements [ J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2009, 56 (8):1689.
  • 9康立山,谢云等.非数值并行算法一模拟退火算法(第一册)[M].北京:科学出版社,2003. 35.
  • 10胡艳军.改进EM算法的CDMA盲多用户检测[J].应用科学学报,2008,26(3):264-268. 被引量:2

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部