期刊文献+

纳米切削单晶铜的准连续介质法模拟

Quasicontinuum simulation of nanometric cutting of single crystal copper
下载PDF
导出
摘要 采用准连续介质多尺度方法模拟了单晶铜的纳米切削过程。分别采用原子位置图和应力分布图对纳米切削过程中局部变形进行描述,得出了模型的切削力-切削距离的响应曲线。从微观角度分析了单晶铜纳米切削过程中材料变形、材料去除机理及内部损伤情况。根据模拟结果,对切削过程中位错形核、演化过程、湮灭消失、切屑及加工表面的形成过程进行了深入的分析。从位错演化的角度解释了切削力与应变能曲线的峰谷变化。提出了纳米切削过程中材料受到刀具的挤压作用而导致位错形核。得出了在纳米切削过程中塑性材料的去除是基于位错运动演化的结论。 The nanometric cutting process of the single crystal copper was simulated by the quasicontinuum multi-scale method. The diagrams of atomic positions and stress distributions were used to describe the local deformation in the nanometric cutting process to get the response curve of the cutting force versus cutting distance in the process. The atomic details of material deformation, material removal and internal damage in the process were analyzed microscopically. According to the simulation results, the dislocation nucleation, the evolution process, the vanishment of dislocations, the formations of cutting chips and newly generated surfaces were analyzed deeply in atomic level. The fluctuations of cutting force and strain energy were explained by evolution of dislocation movement. It was concluded that the compression in cutting zone ahead of cutting edge in the nanometric cutting process led to dislocation nucleation, and the removal of plastic material in the process resulted from the evolution of dislocations
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第2期352-357,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 '863'国家高技术研究发展计划项目(2012AA041206) 国家自然科学基金项目(50905073 51275198 51105163) 科技部国际合作专项项目(2010DFA72000) 吉林省科技发展计划重点项目(20110307)
关键词 应用力学 单晶铜 纳米切削 准连续介质法 切削力 应变能 位错演化 applied mechanics single crystal copper nanometric cutting quasi-continuum method cutting force strain energy dislocation evolution
  • 相关文献

参考文献13

  • 1孙西芝,陈时锦,程凯.基于多尺度仿真方法的单晶铝纳米切削过程研究[J].南京理工大学学报,2008,32(2):144-148. 被引量:4
  • 2Yan J, Strenkowski J. A finite element analysis of orthogonal rubber eutting[J]. Journal of Materials Processing Technology, 2006, 174(1-3):102 108.
  • 3Mamalis A G, Horvath M, Branis A S, et al. Finite element simulation of chip formation in orthogonal metal cutting[J]. Journal of Materials Processing Technology, 2001,110 ( 1 ) :~ 19 27.
  • 4Simoneau A, Ng E, Elbestawi M A. (.7hip formation during microscale cutting of a medium carbon steel [J]. International Journal of Machine Tools and Manufacture, 2006,46(5) :467-481.
  • 5Shi G, Deng X, Shet (7. A finite element study of the e//ect of friction in orthogonal metal cuuing[J]. Finite Elements in Analysis and Design, 2002. 38 (9) :863-883.
  • 6Maekawa K, hoh A. Friction and tool wear in nano- scale machining- a molecular dynamics approach [J]. Wear, 1995,188(1-2):115-122.
  • 7I.in Z C, Huang J C, The influence of di//erent cm ring speeds on the cutting force and strain-stress be- haviors of single crystal copper during nano scale or- thogonal eutting[J]. Journal of Materials Processing Technology, 2008,201(1-3) :477-482.
  • 8Komanduri R, Chandrasekaran N, Ra// I, M. MI) simulation of nanometric culting of single crystal a- luminum-e//ect of cryslal orientalion and direction of eutting[J]. Wear, 2000,242( 1-2): 60-88.
  • 9Abraham F F, Gao H J. How fast can crack propa- gate[R]. Phys Rev Let, 2000, 84(I1): 3113.
  • 10Tadmor E B, ()rtiz M, Phillip S R. Quasicontinuum analysis of defects in solids[J]. Philosophical Maga zine A, 1996,73(6) :1529-1563.

二级参考文献12

  • 1Shimada S, Ikawa N, Tanaka D, et al. Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation [J]. CIRP Ann, 1993, 50:61 -64.
  • 2Komanduri R, Chandrasekaran N, Raft L M. Simulation of nanometrie cutting of single crystal aluminumeffect of crystal orientation and direction of cutting [ J]. Wear, 2000, 242 : 60 - 88.
  • 3Cheng K, Luo X, Ward R, et al. Modeling and simulation of the tool wear in nanometric cutting [ J ]. Wear, 2003, 252:1 427- 1 432.
  • 4Tadmor E B, Ortiz M, Phillips R. Quasicontinuum analysis of detects in crystals [ J]. Phil Mag A, 1996, 73: 1529-1563.
  • 5Pillai A R, Miller R E. Crack behavior at bi-crystal interfaces: a mixed atomistic and continuum approach [J]. Materials Research Society Symposium Proceedings, 2001, 653:Z2.9.1-Z2.9.7
  • 6Rafii-Tabar H, Hua L.A multi-seale atomistic-continuum modeling of crack propagation in a two-dimensional macroscopic plate [ J]. Journal of Physics Condensed Matter, 1998, 10 (11) : 2 375 -2 387.
  • 7Abraham F F, Bernstein N, Broughton J Q, et al. Dynamic fracture of silicon: concurrent simulation of quantum electrons, classical atoms, and the continuum solid [J]. MRS Bulletin, 2000 (5) : 27 -32.
  • 8Rudd R E, Broughton J Q. Coarse-grained molecular dynamics and atomic limit of finite elements [ J]. Phy Rev B, 1998, 58:5 893 -5 896.
  • 9Mullins M, Dokainish M. Simulation of the (001) plane crack in iron employing a new boundary scheme [J]. Phil Mag A, 1982, 46 (5): 771 -787.
  • 10Miller R E, Tadmor E R.The quasicontinuum method: overview, applications and current directions [ J ]. Journal of computer-aided material design, 2002, 9 : 203 - 239.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部