期刊文献+

基于多核SVM-GMM的短语音说话人识别 被引量:11

Speaker recognition with short utterances based on multiple kernel SVM-GMM
下载PDF
导出
摘要 运用多个核函数的线性组合构造多核空间,在多核空间上设计了基于支持向量机的说话人分类器,实现短语音说话人识别。多核映射能够解决单核映射核函数及其参数选择的难题,增加说话人的可区分性,提高分类器的性能。算法中结合了高斯混合模型(GMM),并以GMM超向量作为说话人的最终特征参数进行仿真实验。实验表明,在短语音和两种噪声环境中,基于多核SVM-GMM的短语音说话人识别算法较SVM-GMM算法能得到更好的识别性能和鲁棒性。 A linear combination of several kernels is used to construct multiple kernel space. In multiple kernel space, Support Vector Machine (SVM) classifiers are designed to identify speakers with short utterances. Multiple kernel mapping can solve the problem of single kernel mapping, such as the selection of kernel function and parameters. Besides, multiple kernel mapping can increase discriminative power among different speakers and improve the performance of classifiers. In simulation experiment, Gaussian Mixture Model (GMM) was used to get GMM supervector as speakers' final feature parameters. Experiment results show that under the condition of short utterances and two noisy environments, the performance and robustness of the multiple SVM-GMM speaker recognition algorithm are better than that of SVM-GMM algorithm.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第2期504-509,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 吉林省科技发展计划项目(201101032) 高等学校博士学科点专项科研基金项目(20090061120042)
关键词 通信技术 说话人识别 短语音 多核支持向量机 高斯混合模型超向量 communication speaker recognition short utterances multiple kernel SVM Gaussian mixture model supervector
  • 相关文献

参考文献10

  • 1Yang Yao-yuan, Chen Wei, Lu Yu-dong, et al. Re- search of speaker identification based on little train- ing data[C]//Proceeding of the 3rd International Conference on Machine Learning and Cybernetics, Shanghai, 2004.
  • 2Jayanna H S, Mahadeva Prasanna S R. Multiple frame size and rate analysis for speaker recognition under limited data condition[J], lET Signal Pro- cessing, 2009, 3(3) : 189-204.
  • 3Mak Man-Wai, Rao Wei. Utterance partitioning with acoustic vector resampling for GMM-SVMspeaker verification [J]. Speech Communication, 2011, 53(1) :119-130.
  • 4Zien A, Ong C S. Muhiclass multiple kernel learn- ing[C]//Proceedings of the 24th International Con- ference on Machine Learning. New York, USA: ACM, 2007.
  • 5Tian Xi-lan, Gasso Gilles, Canu St6phane. A multi- ple kernel framework for inductive semi-supervised SVM learning[J]. Neuro-computing, 2012, 90(1): 46-58.
  • 6Chen Zhen-yu, Li Jian-ping, Wei Li-wei, et al. Multiple-kernel SVM based multiple-task oriented data mining system for gene expression data analysis[J]. Expert Systems with Applications, 2011, 38 (10) : 12151-12159.
  • 7WU Zheng-Peng ZHANG Xue-Gong.Elastic Multiple Kernel Learning[J].自动化学报,2011,37(6):693-699. 被引量:6
  • 8University of California Irvine. UCI Machine Learn- ing Repository[EB/OL]~. http://archive, ics. uci. edu/ml.
  • 9吴玺宏.一个面向说话人识别的汉语语音数据库[EB/OL].http://nlprweb.ia.ac.cn/english/irds/chinese/SinobiometricsPDF/Wuxi-hong.pdf,2002.
  • 10Campbell W, Sturim D E, Reynolds D A, Support vector machines using GMM supervectors for speak- er verification[J]. IEEE Signal Processing Letters, 2006, 13(5): 308-311.

二级参考文献20

  • 1Bonnans J F, Gilbert J C, Lemarechal C, Sagastizabal C. Numerical Optimization: Theoretical and Practical Aspects. Springer-Verlag, 2006.
  • 2Lanckriet G R G, Cristianini N, Bartlett P, Ghaoui L E, Jordan M I. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 2004, 5, 27-72.
  • 3Bach F R, Lanckriet G R G, Jordan M I. Multiple kernel learning, conic duality, and the SMO algorithm. In: Pro- ceedings of the 21st International Conference on Machine Learning. New York, USA: ACM 2004. 1-8.
  • 4Kimeldor G S, Wahba G. Some results on tchebycheffian spline functions. Journal of Mathematical Analysis and Ap- plications, 1971, 33(1): 82-95.
  • 5Scholkopf B, Smola A. Learning with kernels: support vector machines, regularization, optimization, and beyond. Cam- bridge: The MIT Press, 2002.
  • 6Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B- Statistical Methodology, 1996, 58(1): 267-288.
  • 7Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2005, 67: 301-320.
  • 8Micchelli C A, Pontil M. Learning the kernel function via regularization. Journal of Machine Learning Research, 2005, 6:1099-1125.
  • 9Rakotomamonjy A, Bach F R, Canu S, Grandvalet Y. Sim- pleMKL. Journal of Machine Learning Research, 2008, 9: 2491-2521.
  • 10Bonnans J F, Shapiro A. Optimization problems with per- turbations: A guided tour. Siam Review, 1998, 40(2): 228-264.

共引文献7

同被引文献109

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部