期刊文献+

关于极大二部匹配可扩图

On maximal bipartite matching extendable graphs
下载PDF
导出
摘要 若简单图G的每一个二部匹配都可增扩为G的一个完美匹配,则称图G是二部匹配可扩图(简称BM-可扩图)。BM-可扩图广泛地存在于相对稠密的图类之中。讨论树梯图、加强树梯图和正则加强树梯图等图类,并在树梯图图类中确定了正则加强树梯图是加强树梯图中的极大BM-可扩图的刻画。该结论与Wang Xiu-mei一起给出了三类极大BM-可扩图的完全刻画。 If every bipartite match in a simple graph G can be expanded to one of its perfect match, G is called a bipartite-matching extendable graph ( simply denoted by BM-extendable graph). In the family of dense graphs, there are many BM-extendable graphs. Families of tree-ladders, stronger tree-ladders and regular stronger tree-ladders are intradueed. It is shown that in the family of stronger tree-ladders, the only maximal BM-extendable graphs are regular stronger tree-ladders. This together with those Wang Xiu-mei' s paper give a complete characterization of maximal BM-extendable graphs in three families of graphs.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第1期28-32,共5页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10901144 11101383 11101284) 上海市自然科学基金资助项目(10ZR1412500 11ZR1425100) 上海电力学院085项目(C-8209-11-261) 河南省基础与前沿技术研究计划项目(102300410044)
关键词 完美匹配 二部匹配 二部匹配可扩图 极大二部匹配可扩图 perfect match bipartite match bipartite match extendable graph maximal bipartite match extendablegraph
  • 相关文献

参考文献7

二级参考文献28

  • 1Anunchuen N., Caccetta L. On critically k-extendable graphs[J]. Australasian Journal of Combinatorics, 1992, 6: 39-65.
  • 2Anunchuen N., Caccetta L. On minimally k-extendable graphs[J]. Australasian Journal of Combinatorics, 1994, 9: 153-168.
  • 3Bondy J.A., Murty U.S.R. Graph Theory with Applications[M]. London, Macmillan Press Ltd, 1976.
  • 4Favaron O. On k-factor-critical graphs[J]. Discussion Mathematics, 1996, 16: 41-51.
  • 5Favaron O. Extendability and factor-criticality[J]. Discrete Mathematics, 2000, 213: 115-122.
  • 6Favaron O., Shi M.Y. Minimally k-factor-critical graphs[J]. Australasian Journal of Combinatorics, 1998, 17: 89-97.
  • 7Lou D.J. On thestructure of minimally n-extendable bipartite graphs[J]. Discrete Mathematics, 1999, 202: 173-181.
  • 8Lou D.J., Yu Q.L. Connectivity of k-extendable graphs with large k[J]. Discrete Applied Math ematics, 2004, 136: 55-61.
  • 9Lovasz L., Plummer M.D. Matching Theory[M]. North Holland, Elsevier Science Publishers, 1986.
  • 10Plummer M.D. On n-extendable graphs[J]. Discrete Mathematics, 1980, 31: 201-210.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部