期刊文献+

具双时滞Nicholson果蝇系统的数值逼近

Numerical approximation of a class Nicholson’s blowflies model with two delays
下载PDF
导出
摘要 研究一类带有捕捞项的具有双时滞的Nicholson果蝇系统的数值逼近问题。采用欧拉方法,得到相应的离散果蝇系统,将该时滞差分方程表示为映射,然后利用离散动力系统的分支理论,给出该离散果蝇系统的数值Hopf分支存在的充分条件。证明当步长充分小时,离散果蝇系统的数值Hopf分支值逼近于相应连续果蝇系统的Hopf分支值。 The numerical approximation of a class Nicholson's blowflies model with harvesting rate and two delays is studied. First, discrete system is gained by using Euler method and the delay deference equation is written as a map. Then, employing the theories of bifurcation for discrete blowflies system, the sufficient conditions to guarantee the existence of Hopf bifurcations for numerical approximation are given. It also proved that for sufficient small step, the numerical Hopf bifurcation value is approximate to that of the original equation.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第1期79-82,共4页 Journal of Natural Science of Heilongjiang University
基金 黑龙江省教育厅科学技术研究项目(12511609) 齐齐哈尔大学青年教师科研启动支持计划项目(2012k-M31)
关键词 双时滞 欧拉方法 数值逼近 HOPF分支 two delays Euler method numerical approximation Hopf bifurcation
  • 相关文献

参考文献11

  • 1KULENOVI M R S, LADAS G, SFICAS Y G. Global attraetivity in Nicholson' s blowflies[ J]. Applicable Analysis, 1992, 43:109 -124.
  • 2KOCIC V L J, LADAS G. Oscillation and global attraetivity in a discrete model of Nieholson' s blowflies[ J]. Applicable Analysis, 1990, 38 : 21 -31.
  • 3WEI Jun-jie, LI M Y. Hopf bifurcation analysis in a delayed Nicholson blowflies equation[ J]. Nonlinear Analysis, 2005, 60:1357 - 1367.
  • 4BEREZANSKY L, BRAVERMAN E, IDELS L. Nicholson' s blowflies differential equations revisited : main results and open problems [ J ]. Ap- plied Mathematical Modelling, 2010, 34:1405 -1417.
  • 5张向华.具双时滞的Nicholson果蝇系统的动力学性质[J].哈尔滨工业大学学报,2011,43(6):70-75. 被引量:1
  • 6李冬松,王秋宝,刘明珠.一类延迟微分方程的数值霍普夫分支分析[J].黑龙江大学自然科学学报,2007,24(1):19-23. 被引量:2
  • 7WANG Qiu-bao, LI Dong-song, LIU Ming-zhu. Numerical Hopf bifurcation of Runge-Kutta methods for a class of delay differential equations [ J ] Chaos, Solitons & Fractals, 2009, 42 (5) : 3087 -3099.
  • 8ZHANG Chun-rui, ZHENG Bao-dong. Stability and bifurcation of a two-dimension discreten neural network model with multi-delays[ J ]. Chaos Solitons & Fractals, 2007, 31 (5) : 1232 -1242.
  • 9魏新,张敬,周莉.一类时滞Nicholson果蝇系统数值Hopf分支分析[J].齐齐哈尔大学学报(自然科学版),2012,28(3):90-93. 被引量:2
  • 10HALE J K, VERDYN S M. Introduction to functional differential equations[ M]. New York: Springer Verlag, 1993.

二级参考文献19

  • 1张春蕊.时滞logistic微分方程Hopf分支参数值的数值逼近[J].东北林业大学学报,2004,32(5):78-79. 被引量:1
  • 2GURNEY M S, BLYTHE S P, NISBEE R M. Nicholson' s blowflies revisited [ J ]. Nature, 1980, 287 : 17-21.
  • 3KULENOVI M R S, LADAS G, SFICAS Y G. Global attractivity in Nicholson' s blowflies [ J ]. Appl Anal, 1992, 43:109-124.
  • 4WENG P, LIANG M. Existence and global attractivity of periodic solution of a model in population dynamics [J]. Acta Math Appl Sinica (English Ser), 1996 (12) :427 -434.
  • 5KOCIC V L J, LADAS G. Oscillation and global attractivity in a discrete model of Nicholson' s blowflies [ J ].Appl Anal, 1990, 38:21 -31.
  • 6BEREZANSKY L, BRAVERMAN E, IDELS L. Nicholson' s blowflies differential equations revisited : main resuits and open problems [ J ]. Applied Mathematical Modelling, 2010, 34 : 1405-1417.
  • 7WU J. Theory and applications of partial functional differential equations [M]. Applied Mathematical Sciences 119. New York: Springer, 1996:65-70.
  • 8HALE J. Theory to functional differential equations [ M ]. New York : Springer, 1977:20-180.
  • 9RUAN S, WEI J. On the zeros of transcendental functions with applications to stability of delay differential equations [ J ]. Dynam Cont Discr Impul Sys Series A: Math Anal, 2003, 10 : 863-874.
  • 10WEI J, LI Y. Hopf bifurcation analysis in a delayed Nicholson blowflies equation [ J ]. Nonlinear Analysis, 2005, 60:1357-1367.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部