期刊文献+

三进制编码实现硬件演化方法研究 被引量:9

Research of Ternary Code Implemented in Hardware Evolution
下载PDF
导出
摘要 针对硬件演化在演化算法中采用定长染色体编码结构位串,其编码过长会造成演化速度慢、成本高等缺点,提出基于三进制编码实现演化算法的方法.利用Matlab矩阵运算的优势,采用遗传算法实现演化算法,找到最优电路编码矩阵,得到了最佳电路函数表达式.实例反映了三进制编码比定长染色体编码规模小,遗传算法中采用多点定向变异具有收敛速度快等优点,证明了三进制编码演化算法的有效性. Evolvable arithmetic uses fixed length chromosome code which can decide configuration in traditional evolvable hardware, its long code will led to low evolvable rate and high cost. An evolvable arithmetic which based on ternary code was advanced, these disadvantages can be solved by it. Using the matrix operation predominance of Matlab and the traditional GA, which can implement evolvable arithmetic, and find optimal circuit encode matrix, and get the optimal circuit function expression. The instance reflects many merits, which including the ternary code has small dimensions than fixed length chromosome code, fast constringent was led by multi-- element directional variation, the validity of ternary code was proved.
出处 《微电子学与计算机》 CSCD 北大核心 2013年第3期1-4,共4页 Microelectronics & Computer
基金 河北省重点基础研究项目(10963529D)
关键词 硬件演化 演化算法 遗传算法 故障诊断 hardware evolution evolvable arithmetic GA fault diagnose
  • 相关文献

参考文献6

二级参考文献21

  • 1严来金,李明,王梦.RS(255,223)译码器的设计与FPGA实现[J].微计算机信息,2005,21(1):148-149. 被引量:12
  • 2Sutzle T, Hoos H H.MAX-M1N ant system[J].Ruture Generation Computer System,2000,40(9): 1351 - 1356.
  • 3Morros Mano M,Charles R Kime.Logical computer design fun-damentals second edition updated [M]. 北京:电子工业出版社,2002.
  • 4Yao X, Higuchi T. Promises and challenges of evolvable hardware [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C :Applications and Reviews, 1999,29( 1):87-97.
  • 5Pauline C Haddow, Piet van Remortel.From here to there:Future robust EHW technologies for large digital designs [C]. Third NASA/DoD Workshop on Evolvable Hardware,2001:232-239.
  • 6王小平,曹立明.遗传算法--理论,应用[M].西安:西安交通大学出版社,2002.
  • 7Edmundo BonillaHuerta, Be' a trice Duval, Jin-Kao Hao. A hybrid LDA and genetic algorithm for gene se lection and classification of microarray data[J]. Neuro computing, 2010(73) :2375-2376.
  • 8Zhaohui S Qin. Clustering microarray gene expression data using weighted Chinese restaurant process[J]. Bioinformaties, 2006, 22(16):1988-1999.
  • 9Nabil Belacel, Qian Wang, Miroslava Cuperlovic-culf. Clustering Methods for Microarray Gene Expression Data [J]. OMICS,2006, 10(4): 507-508.
  • 10Michael Laszlo, Sumitra Mukherjee. A genetic algo- rithm using hyper-quadtrees for low-dimensional kmeans clustering[J]. IEEE Transactions on Pattern Analysis and Machine intelligence, 2006, 28(4).. 633-634.

共引文献42

同被引文献70

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部