期刊文献+

大整数模幂的固定基窗口组合算法 被引量:2

Fixed base windowing combination algorithm for large integer modular exponentiation
下载PDF
导出
摘要 模幂乘运算是实现公钥密码体制的一个很重要的运算,其运算速度从整体上决定了公钥密码体制的实现效率。通过采用预处理技术,将椭圆曲线的定点标量乘的固定基窗口方法应用在模幂运算中,与SMM算法进行组合得到一种新的求模幂乘算法——固定基窗口方法。对算法的原理与效率进行了分析,实验结果表明,算法的运算速度得到了有效提高。 Modular exponentiation is an important operation of public-key cryptosystems, which heavily determines the overall implementation of the efficiency of a public-key cryptosystems. This paper proposed a new modular exponentiation algorithm named fixed base windowing algorithm. By precomputation, this algorithm utilized the fixed base windowing algorithm of scalar muhiplieation of elliptic curve combined with SMM algorithm to compute gk mod n. Furthermore, it presented the principle and efficiency analysis of the new algorithm. At last, experimental results show that the computational efficiency has been in- creased effectively.
出处 《计算机应用研究》 CSCD 北大核心 2013年第3期679-681,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(11001061 61070243 41161065) 贵州省科学技术厅 贵州师范大学联合科技基金资金资助项目(黔科合J字LKS[2011]15号) 贵州省科学技术基金资助项目(黔科合J字[2011]2213)
关键词 RSA 模幂运算 SMM算法 固定基窗口方法 RSA modular exponentiation SMM algorithm fixed base windowing algorithm
  • 相关文献

参考文献1

二级参考文献2

  • 1陈运,电子科技大学学报,1995年,24卷,增2期,223页
  • 2卢铁城,信息加密技术,1989年

共引文献8

同被引文献15

  • 1夏静波,张四兰,陈建华.高效的原根生成算法[J].计算机工程与应用,2006,42(11):32-34. 被引量:1
  • 2Nedjah N,de Macedo Mourelle L. High-performance SoC-based implementation of modular exponentiation using evolutionary addition chains for efficient cryptography[J]. Applied Soft Com- puting, 2011,11 (7) : 4302-4311.
  • 3Bleichenbacher D, Flammenkamp A. An efficient algorithm for computing shortest addition ehains[OL], http://www, homes. uni-hielefeld, de/achim/addition chain, html, 1997.
  • 4Zhu Da-xin,Wang Xiao-dong. An Efficient Algorithm for Opti- mal Addition Chains[J]. TELKOMNIKA, 2013, 11 ( 11 ) : 6447-6453.
  • 5Clift N M. Calculating optimal addition chains [J]. Computing, 2011,91:265-284.
  • 6Knuth D E. The art of computer programming., seminumerical algorithms(3rd ed) [M]. Addison-Wesley, Reading, 1997: 461- 485.
  • 7Thurber E G. Efficient generation of minimal length addition chains[J]. SIAM J Comput, 1999,28 : 1247-1263.
  • 8Bahig H M. Star reduction among minimal length addition chains [J]. Computing, 2011,91 : 335-352.
  • 9Adan J, Hillel R M, Cindy G, et al. A Simulated Annealing Algo- rithm for the Problem of Minimal Addition Chains[C]//EPIA' 11 Proceeding of the 15th Protugese Conference on Progress in Artificial Intelligence: Lecture Notes in Computer Science. 2011 : 311-325.
  • 10Sahl D I, Efr:n M M, Luis Guillermo O H. Addition chain length minimization with evolutionary programming[C]//GECCO ' 11 Proceedings of the 13th Annual Conference Companion on Ge- netic and Evolutionary Computation. ACM New York, NY, USA. 2011 : 59-60.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部