期刊文献+

交通流多格点预估格子模型与数值仿真 被引量:1

Multi-anticipation lattice model of traffic flow and numerical simulation
下载PDF
导出
摘要 考虑驾驶员对多格点交通流量预估效应,建立了新的交通流多格点预估格子模型。通过线性稳定性分析获得了改进模型的稳定性条件。通过非线性分析得到了扭结—反扭结密度波解,得到了交通流相空间的三个区域:稳定区域、亚稳定区域和不稳定区域。数值仿真验证了考虑驾驶员对多格点的预估效应,能够进一步提高交通流的稳定性。 This paper constructed a new multi-anticipation lattice model of traffic flow by considering the driver anticipation effect on traffic flux of multi-lattice. It obtained stability condition of improved model by linear stability analysis and derived kink-antikink solution through nonlinear analysis. Therefore it divided the space into three regions: stable, metastable and un- stable. Numerical simulation shows that the stability of traffic flow can be further enhanced with the consideration of the driver anticipation effect on traffic flux of multi-lattice.
作者 彭光含
出处 《计算机应用研究》 CSCD 北大核心 2013年第3期754-756,共3页 Application Research of Computers
基金 国家教育部科学技术研究重点项目(211123) 湖南省教育厅优秀青年项目(10B072) 湖南文理学院博士科研启动项目(BSQD1010) 湖南文理学院重点项目(JJZD0902)
关键词 交通流 格子模型 预估效应 数值仿真 traffic flow lattice model anticipation effect numerical simulation
  • 相关文献

参考文献15

  • 1NAGATANI T. Modified KdV equation for jamming transition in the continuum models of traffic[J]. Physiea A,1998,261 (3-4) : 599-607.
  • 2NAGATANI T. TDGL and MKdV equations for jamming transition in the lattice models of traffic [ J ]. P hy$ica A, 1999,264 ( 3 ) : 581 - 592.
  • 3薛郁.优化车流的交通流格子模型[J].物理学报,2004,53(1):25-30. 被引量:16
  • 4GE Hong-xia, DAI Shi-qiang, XUE Yu, et al. Stabilization analysis and modified Korteweg-De Vries equation in a cooperative driving sys- tem[ J]. Physical Review E ,2005,71 (6) :066119.
  • 5LI Zhi-peng, LI Xing-li, LIU Fu-qiang. Stabilization analysis and modified KdV equation of lattice models with consideration of relative current [ J ]. International Journal Modern Physics C, 2008,19 (8) :1163-1173.
  • 6田钧方,贾斌,李新刚,高自友.Flow difference effect in the lattice hydrodynamic model[J].Chinese Physics B,2010,19(4):31-36. 被引量:3
  • 7PENG Guang-han, CAI Xin-hua, CAO Bin-fang, et al. Non-lane- based lattice hydrodynamic model of traffic flow considering the lateral effects of the lane width[J]. Phys t.etl A,2011,375(30-31 ) :2823- 2827.
  • 8PENG Guang-han, CAI Xin-hua, LIU Chang-qin, et al. A new lat- tice model of traffic flow with the consideration of the honk effect[ J]. International Journal of Modern Physics C, 2011,22 ( 9 ) : 967- 976.
  • 9PENG Guang-han, CAI Xin-hua, CAO Bin-fang, et al. A new lattice model of traffic now with the consideration of the traffic interruption probability[ J]. PhySics A ,2012,391 ( 3 ) :656-663.
  • 10PENG Guang-han, CAI Xin-hua, LIU Chang-qin, et al. A new lat- tice model of traffic flow with the consideration of the driver' s forecast effects[J]. International Journal of C,2011,375(22) :2153-2157.

二级参考文献102

共引文献17

同被引文献15

  • 1NAGATANI T. Modied KdV equation for jamming transition in the continuum models of traffic [ J ]. Physiea A, 1998,261 ( 3- 4 ) : 599- 607.
  • 2NAGATANI T. TDGL and MKdV equations for jamming transition in the lattice models of traffic[ J ]. Physiea A, 1999,264(3 ) : 581-592.
  • 3GE Hong-xia, DAI Shi-qiang, XUE Yu, et al. Stabilization analysis and modified Korteweg-de Vries equation in a cooperative driving system[J]. Physical Review E,2005,71 (6) : 066119.
  • 4LI Zhi-peng, LI Xing-li, LIU Fu-qiang. Stabilization analysis and modified KdV equation of lattice models with consideration of relative current [ J]. International Journal of Moderh Physics C,2008,19 (8) : 1163-1173.
  • 5TIAN Jun-fang, JIA Bin, LI Xing-gang, et al. Flow difference effect in the lattice hydrodynamic model[ J]. Chinose Physical B,2010, 19(4) : 040303.
  • 6PENG Guang-han, CAI Xin-hua, CAO B F, et al. Non-lane-based lattice hydrodynamic model of traffic flow considering the lateral effects of the lane width[J]. Physics Letters A,2011,375(30-31 ) : 2823- 2827.
  • 7PENG Guang-han, CAI Xin-hua, LIU Chang-qing, et al. A new lattice model of traffic flow with the consideration of the honk effect[J]. International Journal of Modem Physics C,2011,22(9) : 967-976.
  • 8PENG Guang-han, CAI Xin-hua, CAO B F, et al. A new lattice model of traffic flow with the consideration of the traffic interruption probability[ J]. Physiea A, 2012,391 (3) : 656-663.
  • 9PENG Guang-han, CAI Xin-hua, LIU Chang-qing, et al. A new lattice model of traffic flow with the consideration of the driver' s fore- cast effects[J]. Physics Letters A,2011,375(22) : 2153-2157.
  • 10PENG Guang-han. A study of wide moving jams in a new lattice model of traffic flow with the consideration of the driver anticipation effect and numerical simulation [ J ]. Physica A, 2012,391 (23) : 5971-5977.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部