期刊文献+

基于蚁群算法思想的智能考试系统模型研究 被引量:8

Intelligent test system model based on ant colony optimization
下载PDF
导出
摘要 针对传统考试耗时耗力等缺点,提出基于解离散优化问题蚁群算法思想的智能考试系统模型。该模型从智能考试系统的需求出发对蚁群算法的信息素初始值的设定进行了探讨并改进了更新规则,将考试结果反馈给系统,从而不仅有效解决了自动组卷问题,而且系统具有了自主学习能力,使其能够更智能化地改进系统性能。经检验,该系统具有组卷速度快且选取试题重复率低等优点,算法有效可行,借助该系统组织的考试能够达到预期目标。 The paper proposed a model of intelligent test system since the traditional test was time-consuming, labor-intensive and unstable. Based on the demand of the intelligence test system, the model explored the setting of the initial value informa- tion of the ant colony optimization and updated the rules so that the test results could be feed backed to the system. This model not only effectively solved the problem of the auto-generating test-paper, but also improved the autonomous learning ability of the system, which was more intelligent to improve the performance. The practical test proves that the system has achieved the expected goal with high quality and high efficiency. The practical test shows that the system has advantages like fast generation of test papers, low repetition of the selected papers and effective colony algorithm. Examinations designed based on this system can achieve the expected testing goals.
出处 《计算机应用研究》 CSCD 北大核心 2013年第3期775-778,共4页 Application Research of Computers
关键词 蚁群算法 智能考试 组卷 信息素 ant colony optimization(ACO) intelligent test auto-generating exam-paper pheromone
  • 相关文献

参考文献11

  • 1夏征农,陈至立.辞海[M].6版.上海:上海辞书出版社.2011:1225.
  • 2DORIGOM,STUTZLET.蚁群优化[M].张军,胡晓敏,罗旭耀,译.北京:清华大学出版社,2007:216-246.
  • 3COLORNI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies[ C]//Proc of the Eca191-European Conference on Ar- iificial Life. Paris: Elsevier, 1991:134-142.
  • 4DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents[ J]. IEEE Trans on Systems Man and Cybernetics part B-Cybernetics, 1996,26( 1 ) :29-41.
  • 5ABDALLAH H, EMARA H M, DORRAH H T, et al. Using ant co- lony optimization algorithm for solving project management problems [J]. Expert Systems with Applications, 2009,36 (6):10004- 10015.
  • 6LIU Yong-qiang, CHANG Qing, XIONG Hua-gang. An improved ant colony algorithm for the vehicle routing problem in time-dependent networks[ J]. IEICE Trans on Communication, 2011, E94B (5) : 1506-1510.
  • 7DENG Guang-feng, LIN W T. Citation analysis and bibliometric ap- proach for ant colony optimization from 1996 to 2010 [ J ]. Expert Systems with Applications,2012,39 (6) : 6229 - 6237.
  • 8程美英,熊伟清,魏平.基于二元蚁群算法求解组卷问题[J].计算机应用研究,2008,25(9):2637-2639. 被引量:11
  • 9程美英,熊伟清,魏平.n元蚁群算法求解组卷问题[J].计算机工程与应用,2008,44(19):223-226. 被引量:4
  • 10肖洋,王骁,刘凤新.在线考试组卷算法研究[J].北京化工大学学报(自然科学版),2006,33(4):44-47. 被引量:34

二级参考文献14

  • 1王雍钧,黄毓瑜.基于知识点题型分布和分值的智能组卷算法研究[J].计算机应用与软件,2004,21(8):111-113. 被引量:33
  • 2魏平,熊伟清,王小权.DNA计算求解连续空间优化问题[J].计算机应用研究,2006,23(1):151-153. 被引量:4
  • 3薛春光,马素珍.“编译技术”试题库及试卷自动生成系统的研究[J].天津理工学院学报,1996,12(4):11-16. 被引量:4
  • 4熊伟清,魏平.二进制蚁群进化算法[J].自动化学报,2007,33(3):259-264. 被引量:52
  • 5Dorigo M,Caro G D.Ant colony optimization:a new meta-heuristic[C]//Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC, USA, 1999 : 1470-1477.
  • 6Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation, 1997,1(1) :53-66.
  • 7Xiong Wei-qing,Yan Chen-yan,Wang Liu-yi.Binary ant colony evolutionary algorithm[C]//International Conference on Intelligent Computing, Hefei, China, 2005 : 1314-1350.
  • 8Werry C.The work of education in the age of ecollege[J].Computers and Composition,2002,19:127-149.
  • 9DORIGO M, CARO G D. Ant colony optimization : a new meta-heuristic[ C ]//Proc of the Congress on Evolutionary Computation. Washington DC : [ s. n. ], 1999 : 1470-1477.
  • 10DORIGO M,GAMBARDELLA L M. Ant colony system:a cooperative learning approach to the traveling salesman problem [ J ]. I EEE Trans on Evolutionary Computation, 1997,1 (1) :53-66.

共引文献73

同被引文献54

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部