期刊文献+

基于基序及其时序关系的耦合流数据分类算法 被引量:2

Classification Algorithm for Coupled Stream Data Based on Motifs and Their Temporal Relations
下载PDF
导出
摘要 耦合流数据分类问题是当前数据挖掘与信息领域的热点和难点,引起国内外越来越多学者的关注,但现有研究成果大多依赖于从单个流数据中提取特征并进行分类,没有考虑到流数据内以及流数据间特征的相互依赖关系。基于此,借鉴生物信息学中基序查找的方法,本文提出了长期频率和逆文档频率的分类方法,该方法主要是将耦合流数据中每个输入流都转化为信号变化特征,以便有效地提取基序,通过计算基序的频率、长期频率与逆文档频率的权重,用以衡量不同输入耦合流数据的基序之间的时序关系,并利用基序与时序的关系实现对耦合流数据的分类,仿真实验的结果也证明了该方法的有效性。 Currently, coupled stream data classification is a very popular topic in data mining and information science, which has been attracted more and more domestic and abroad scholars. However, most of the existing research results are based on the feature extraction and classification from the single stream of data, and the dependency relations among the features within and across the streams are not taken into account. Due to this situation, referring to searching motif methods of bioinformatics, a classifying method applying long - run frequency and inverse document frequency is presented in this research. This method converts every input stream of the coupled stream data into a signal variation to extract the motif effectively. By calculating the frequency of the motif, the long - run frequency and the weight of inverse document frequency, the temporal relationships among the motifs of the input stream data can be approached, then the results can be used to classify the coupled stream data. The simulation results prove the effectiveness of the method.
作者 张杰 赵峰
出处 《情报学报》 CSSCI 北大核心 2013年第2期190-197,共8页 Journal of the China Society for Scientific and Technical Information
基金 本文得到中国博士后科学基金项目(基金号:20100481284)、山东省优秀中青年科学家科研奖励基金项目(基金号:BS2012SF024)、山东省博士后创新基金项目(基金号:201003083)资助.
关键词 基序 时序 耦合流数据 长期频率和逆文档频率 motifs, temporal motifs, coupled stream data, long -run frequency and inverse document frequency.
  • 相关文献

参考文献16

  • 1Gholipour A, Araabi B, Lucas C. Predicting chaotic time series using neural and neurofuzzy models: A comparative study [ J ]. Neural Proceessing Letter, 2006, 24 ( 3 ) : 217-239.
  • 2Kadous M W, Sammut C. Classification of multivariate time series and structured data using constructive induction [ J ] . Machine Learning, 2005, 58 ( 2 ) : 179-216.
  • 3Aggarwal C C. On change diagnosis in evolving data streams[ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005,17 (5) :587-600.
  • 4Hemandez J A, Ospina J D. A multi dynamics algorithmfor global optimization [ J ]. Mathematical and Computer Modelling, 2010, 52(7-8) : 1271-1278.
  • 5Yang J, Yan X, Han J, et al. Discovering evolutionary classifier over high speed non-static stream [ J ]. In Advanced Methods for Knowledge Discovery from Complex Data, 2005,18( 1 ) : 337-363.
  • 6Allen J F. Maintaining knowledge about temporal intervals [J]. Commun ACM, 1983,26 (11) :832-843.
  • 7Hirsch M J, Pardalos P M, Resende M G C. Speeding up continuous GRASP [ J ]. European J of Operational Research, 2010, 205(3) : 507-521.
  • 8魏月兴,许林,陈小前.基于MQ径向基序贯近似建模的联合优化方法[J].计算机仿真,2010,27(8):189-193. 被引量:3
  • 9Sahon G, Fox E A, Wu H. Extended boolean information retrieval[J]. Commun ACM, 1983,26 (11) : 1022- 1036.
  • 10Shannon C E. A mathematical theory of communication [J]. The Bell System Technical Journal, 1948, 27: 379-423.

二级参考文献7

  • 1吴宗敏.散乱数据拟合的模型、方法和理论[M].北京:科学出版社,2008.
  • 2Masato Sekishiro,Gerhard Venter,Vladimir Balabanov[C].11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,AIAA 2006-7091,Portsmouth,Virginia:AIAA,2006.
  • 3Parveen K Chandila,Harish Agarwal,John E Renaud.An Efficient Strategy for Global Optimization using Local Kriging Approximations[C].45th AIAAASMEASCE/AHS/ASC Structures,Structural Dynamics & Materials Confer,AIAA 2004-1873,Palm Springs,California:AIAA,2004.
  • 4T Krishnamurthy.Comparison of Response Surface Construction Methods for Derivative Estimation Using Moving Least Squares,Kriging and Radial Basis Functions[C].46th AIAAASMEASCE/AHS/ASC Structures,Structural Dynamics & Materials Confer,AIAA 2005-1821,Austin,Texas:AIAA,2005.
  • 5Wim C M Van Beers.Kriging Metamodeling In Discrete-Event Simulation:An Overview[C].Proceedings of the 2005 Winter Simulation Conference,2005.
  • 6Timothy W Simpson,Timothy M Mauery.Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization[J].AIAA-98-4755,1998.
  • 7方开泰.均匀试验设计的理论、方法和应用——历史回顾[J].数理统计与管理,2004,23(3):69-80. 被引量:161

共引文献2

同被引文献15

  • 1李为华,刘宏兵,熊炎.数据库中模糊数据的判别[J].信阳师范学院学报(自然科学版),2006,19(1):110-112. 被引量:1
  • 2Pan S, Wu K, Zhang Y, et al. Classifier ensemble foruncertain data stream classification[C]. Proc of the 14thPacific-Asia Conf on Knowledge Discovery and DataMining. Boston: Harvard Business School Press, 2010:488-495.
  • 3Gao C, Wang J. Direct mining of discriminative patternsfor classifying uncertain data[C]. Proc of the 16th ACMSIGKDD Int Conf on Knowledge Discovery and DataMinding. New York: Free Press, 2010: 861-870.
  • 4Qin B, Xia Y, Wang S, et al. A novel bayesian classificationfor uncertain data[J]. Knowledge-Based System, 2011,24(7): 1151-1158.
  • 5Aggarwal C, Yu P S. A framework for clustering uncertaindata streams[C]. Proc of the 24th IEEE Int Conf on DataEngineering. Canc ′un: Canc ′un Press, 2008: 150-159.
  • 6Pang S, Ban T, Kadobayashi Y, et al. Personalizedmode transductive spanning svm classification tree[J].Information Sciences, 2011, 181(4): 2071-2085.
  • 7Shaker A, Senge R, Hllermeier E. Evolving fuzzypattern trees for binary classification on data streams[J].Inforamtion Sciences, 2012, 19(2): 34-51.
  • 8Salton G, Fox E A, Wu H. Extended Boolean informationretrieval[J]. Commun ACM, 1983, 26(11): 1022-1036.
  • 9Nandedkar A V, Biswas P K. A granular reflex fuzzy min-max neural network for classification[J]. IEEE Trans onNeural Networks, 2009, 20(7): 1117-1134.
  • 10Leite D, Ballini R, Costa P, et al. Evolving fuzzy granularmodeling from non-stationary fuzzy data streams[J].Evolving Systems, 2012, 3(1): 65-79.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部