期刊文献+

基于点阵的线探索优化布线研究 被引量:2

Line-exploring Algorithm Based on Lattice
下载PDF
导出
摘要 提出了基于布线点阵的线探索优化算法,它继承了计算几何中无网格布线的优点,克服了计算几何算法中当器件排列繁杂时,其效率可能比传统的网格布线还要低的问题。首先采用布线点阵,减少探索的次数;然后运用死点避免方法保证算法的完备性,确保能够找到实际上存在的路径;另外还采用了路径优化方法减少了路径的拐点。最后,利用电路板测试结果展示平台仿真实验,获得了良好的布线结果和展示效果。 A line-exploring algorithm based on routing lattice routing direction code was proposed. It inherits the advantages of gridless routing in computational geometry, which conquers possible lower effective than traditional grid routing method when the array of device is complex. First of all, routing lattice was adopted to reduce exploring times, and then the completeness was combined by dead point-avoided to identify to find a realistic routes. Furthermore, the route optimization algorithm was utilized to reduce the inflection of the route. The results of emulation experiment of exhibiting platform show great effects in routing and layout.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第3期514-518,共5页 Journal of System Simulation
基金 国家自然科学基金(61070124) 安徽省高等学校优秀青年人才基金项目(2010SQRL013ZD) 中央高校基本科研业务费专项资金项目(2010HGBZ0565 2010HGZY0001)
关键词 计算几何 布线点阵 线探索算法 无网格布线 computational geometry routing lattice line-exploring algorithm gridless routing
  • 相关文献

参考文献15

  • 1Korte B, Rautenbach D, Vygen J. BonnTools: MathematicalInnovation for Layout and Timing Closure of Systems on a Chip[J]. Proceedings of the IEEE (S0018-9219), 2007,95(6): 555-572.
  • 2刘晓平,唐益明,郑利平.复杂系统与复杂系统仿真研究综述[J].系统仿真学报,2008,20(23):6303-6315. 被引量:76
  • 3L A Zadeh. Outline of a new approach to the analysis of complexsystems and decision processes [J]. IEEE Transactions on SystemsMan and Cybernetics (S0018-9472), 1973, 3(1): 28-44.
  • 4靳蕃,范俊波,谭永东.神经网络和神经计算机[M].成都:西南交通木学出版社,1993.
  • 5Yong Deng, Yuxin Chen, Yajuan Zhang, Sankaran Mahadevan.Fuzzy Dijkstra algorithm for shortest path problem under uncertainenvironment [J]. Applied Soft Computing (SI568-4946),2012,3(12): 1231-1237.
  • 6应昌胜,洪先龙,王尔乾.一个基于整体优化分析的区域布线算法一DRAFT [J].半导体学报,1998,9(6): 596-603.
  • 7庄昌文,范明钰,李春辉,虞厥邦.基于协同工作方式的一种蚁群布线系统[J].Journal of Semiconductors,1999,20(5):400-406. 被引量:17
  • 8C Demetrescu, A V Goldberg, D S Johnson. Implementationchallenge for shortest paths. M-Y Kao (Ed.) [M]// Encyclopedia ofAlgorithms. Germany: Springer-Verlag, 2008: 395-398.
  • 9D Wagner, T Willhalm. Speed-up techniques shortest pathcomputations. 24th Annual Symposium on Theoretical Aspects ofComputer Science (STACS 2007) [J]. Lecture Notes in ComputerScience (LNCS) (S0302-9743), 2007,4393(Springer-Verlag):23-36.
  • 10S Peyer, D Rautenbach, J Vygen. A generalization of Dijkstra’sshortest path algorithm with applications to VLSI routing [J].Journal of Discrete Algorithms (S1570-8667), 2009, 7(4): 377-390.

二级参考文献72

共引文献91

同被引文献15

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部