期刊文献+

一种迭代的核密度估计视觉目标检测算法 被引量:4

Iterative Visual Object Detection Algorithm Based on Kernel Density Estimation
下载PDF
导出
摘要 利用srgb颜色空间性质,提出了一种基于Epanechnikov核函数的非参数核密度估计进行视觉目标检测,基于贝叶斯理论的迭代决策方法进一步消除噪声并增强了二值检测结果。在迭代过程中,模拟退火加快了收敛速度。仿真证明,算法能够抵抗光照变化和阴影等带来的不良影响,得到优异的目标检测结果;与几种经典方法相比,在大大降低误检率的同时提高了目标正确检出率,具有良好的实用价值。 Taking advantage of the property of srgb color space, a non-parametric kernel density estimation method based on Epanechnikov kernels was proposed to detect vision objects. The Bayes' Theory based recursive decision making technique further eliminated noises and enhanced the resultant binary image. In recursion, the simulated annealing boosted the convergence rate. Simulations prove the proposed algorithm can resist unfavorable effects like illumination changes and shadows, and can obtain an outstanding target detection result. Compared to several classical methods, it can dramatically reduce the false alarm rate meanwhile boosting the true detection rate, thereby has practical value.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第3期558-564,共7页 Journal of System Simulation
基金 国家自然科学基金项目(61174090) 十二五863计划高技术重大课题(2012AA10A507) 十二五863计划重点课题(2013AA100305)
关键词 核密度估计 马尔科夫随机场 srgb色彩空间 模拟退火 视觉目标检测 kernel density estimation markov random field srgb color space simulated annealing visual object detection
  • 相关文献

参考文献2

二级参考文献23

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2田广,戚飞虎,朱文佳,毛欣,陈磐君.单目移动拍摄下基于人体部位的行人检测[J].系统仿真学报,2006,18(10):2906-2910. 被引量:10
  • 3Oren M,Papageorgiou C,Sinha P,et al.Pedestrian detection using wavelet templates[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington:IEEE,1997:193-199.
  • 4Ying Wu,Ting Yu,Gang Hua.A statistical field model for pedestrian detection[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Vol 1.Washington:IEEE,2005:1023-1030.
  • 5Navneet Dalal,Bill Triggs.Histograms of oriented gradients for human detection[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Vol 2.Washington:IEEE,2005:886-893.
  • 6Fang Y,K Yamada,Y Ninomiya,et al.A Shape-Independent Method for Pedestrian Detection with Far-Infrared Images[J].IEEE Transactions On Vehicular Technology (S0018-9547),2004,53(6):1679-1697.
  • 7Masahiro Yasuno,Sasaki Ryousuke,Noboru Yasuda,et al.Pedestrian Detection and Tracking in Far Infrared Images[C]// International IEEE Conference on Intelligent Transportation Systems.Washington:IEEE,2005:131-136.
  • 8M Bertozzi,A Broggi,P Grisleri,et al.Pedestrian Detection in Infrared Images[C]// International IEEE Conference on Intelligent Transportation Systems.Washington:IEEE,2003:662-667.
  • 9Harsh Nanda,Larry Davis.Probabilistic Template Based Pedestrian Detection in Infrared Videos[C]// IEEE Intelligent Vehicle Symposium,Vol 1.Washington; IEEE,2002:15-20.
  • 10Fengliang Xu,Xia Liu,Fujimura K.Pedestrian detection and tracking with night vision[J].IEEE Transactions on Intelligent Transportation Systems (S1524-9050),2005,6(1):63-71.

共引文献17

同被引文献37

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2董琰,葛君伟.一种基于网格密度的自适应聚类分析算法[J].计算机应用研究,2007,24(8):56-57. 被引量:4
  • 3HanJiawei,KamberM.数据挖掘:概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2012.
  • 4Collins R T,Yanxi L,Marius L.Online selection of discriminative tracking features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (10):1631-1643.
  • 5Azghani M,Aghagolzadeh A,Ghaemi S,et al.Intelligent modified mean shift tracking using genetic algorithm[C]//Proceedings of the 5th International Symposium on Telecommunications.Los Alamitos:IEEE Computer Society Press,2010:806-811.
  • 6Liang D W,Huang Q M,Jiang S Q,et al.Mean Shift blob tracking with adaptive feature selection and scale adaptation[C]//Proceedings of IEEE Conference on Image Processing.Los Alamitos:IEEE Computer Society Press,2007:369-372.
  • 7He W,Zhao X L,Zhabg L.Online feature extraction and selection for object tracking[C]//Proceedings of IEEE Conference on Mechatronics and Automation.Los Alamitos:IEEE Computer Society Press,2007:3497-3502.
  • 8Choi J Y,Ro Y M,Plataniotis K N.Boosting color feature selection for color face recognition[J].IEEE Transactions on Image Processing,2011,20(5):1425-1434.
  • 9Padmakala S,AnandhaMala G S,Shalini M.An effective content based video retrieval utilizing texture,color and optimal key frame features[C]//Proceedings of International Conference on Image Information Processing.Los Alamitos:IEEE Computer Society Press,2011:1-6.
  • 10Lin B F,Chan Y M,Chen F L,etal.Integrating appearance and edge features for sedan vehicle detection in the Blind-Spot area[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(2):737-747.

引证文献4

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部