摘要
构建了含风电场电力系统发电成本和环境影响的双目标优化调度模型,应用模糊支配将双目标函数转化为单个评价标准,提出了基于模糊支配的生物地理学优化算法并对模型进行求解。通过与使用同样支配算法的遗传算法、粒子群优化算法相比较,验证了所提算法在处理电力系统多目标优化调度问题中的可行性和优越性。算例分析表明,根据优化调度决策,在合理的穿透功率范围内,风电的并网对提高电力生产的经济性具有较明显的效果,而在改善环境效益方面不是决定性因素。
A bi-objective optimal dispatch model of power system with wind farm is established,i.e, power production cost and environment impact. The fuzzy-dominance method is employed to convert the hi- objective function into single criterion,and the BBO(Biogeography-Based Optimization) algorithm combined with fuzzy-dominance method is proposed to solve the model. The applicability and superiority of BBO algorithm are verified by the comparison among BBO algorithm,PSO algorithm and GA combined with same dominance method. Case analysis shows that,within the reasonable range of wind power penetration,the grid-connected wind power improves significantly the economy of power production according to the optimal dispatch strategy,but it is not the decisive factor in environmental imorovement.
出处
《电力自动化设备》
EI
CSCD
北大核心
2013年第3期123-128,共6页
Electric Power Automation Equipment
基金
教育部博士研究生学术新人奖资助项目(5052011-207016)
中央高校基本科研业务费专项资金资助项目(2011-20702020009)~~
关键词
生物地理学优化算法
风电
优化
帕累托最优
模型
biogeography-based optimization algorithm
wind power
optimization
Pareto optimal
models