期刊文献+

基于L_1与空间点分类的3维场景重建

Three dimensional scene reconstruction based on L_1 and scene point classification
原文传递
导出
摘要 针对多视图的3维重建问题,提出一种基于L1与空间点分类的3维场景重建技术。首先采用效率较高的L1方法剔除残留局外点,以避免重建过程中受到局外点的干扰;再将空间点分为两类,第1类为两视图可见空间点,第2类为多于两视图可见空间点;针对第1类空间点采用高精度的最优三角形法进行重建,而第2类空间点采用L∞范数方法进行重建,并不断调整二分搜索的上下界,以减少迭代次数。实验结果表明了本文方法的优越性。 In this paper, we present a new technique for solving geometric structure and motion problems based on Ll and scene point classification. First, in order to avoid that our reconstruction method is affected by outliers, the outliers are removed using the L1 approach. Second, the scene points are divided into two classes; the first class contains those scene points which are visible in two views; the second class contains those scene points which are visible in more than two views. The optimal triangulation method is used for the first class. The L norm minimization is used for the second class and the gap between the upper and lower bound of the bisection is kept as small as possible, so that the computation time is decreased. The experimental results show the advantages of our method.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第3期277-282,共6页 Journal of Image and Graphics
基金 广东省自然科学基金自由申请项目(S2011010004006)
关键词 3维场景重建 空间点分类 二阶锥规划 L1方法 L∞范数 最优三角形法 3D scene reconstruction scene point classification second order cone programming L approach L~ norm the optimal triangulation method
  • 相关文献

参考文献15

  • 1Hartley R, Zisserman A. Multiple View Geometry in Computer Vision [M]. Cambridge : Cambridge University Press ,2003.
  • 2Olsson C, Kahl F, Oskarsson M. Branch and bound methods for euclidean registration problems [ J ]. IEEE Trans. Pattern Analy- sis and Machine Intelligence, 2009,31 (5) :783-794.
  • 3Kahl F, Agarwal S, Chandraker M K, et al. Practical global optimization for muhiview geometry [ J ]. International Journal of Computer Vision, 2008,79 ( 3 ) :271-284.
  • 4Lu F F, Hartley R. A fast optimal algorithm for L2 triangulation [ C]//Proeeedings of Asian Conference on Computer Vision. Berlin Heidelberg: Springer-Verlag, 2007:279-288.
  • 5Olsson C, Kahl F, Hartley R. Projective least-squares: global solutions with local, optimization[ C ]//Proceedings of Conference on Computer Vision and Pattern Recognition. Miami: IEEE Computer Society, 2009:1216-1223.
  • 6Hartley R, Schaffalitzky F. L-infinity minimization in geometric reconstruction problems [ C ]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2004 : 504-509 .
  • 7Kahl F. Multiple view geometry and the L-infinity norm [ C ]// Proceedings of International Conference on Computer Vision. Beijing: Microsoft Asia Research,2005:1002-1009 .
  • 8Kahl F, Hartley R. Multiple-view geometry under the L-infinity norm[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(9) :1603-1617.
  • 9Olsson C, Eriksson A. Triangulating a plane [ C ]// Proceedings of Scandinavian Conference on Image Analysis. Berlin Heidel- berg : Springer-Verlag, 2011 : 13-23.
  • 10Ke Q, Kanade T. Quasiconvex optimization for robust geometric reconstruction[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 ( 10 ) : 1834 -1847.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部