期刊文献+

基于云计算的作业管理系统CJMS的负载均衡的研究 被引量:1

Research on Load Balancing of Cloud Computing-Based Job Management System CJMS
下载PDF
导出
摘要 作业管理系统常采用集中式负载分散策略实现负载平衡;但是在集中式负载分散策略中,中央控制器容易引起单点故障,成为系统瓶颈;尤其是云计算环境下,服务器数量巨大,中央控制器将承担非常大的负荷;为了提高云计算系统的效率,提出了一种基于分布式分组策略的负载均衡的实现方法,将集群系统中的服务器按照地理位置进行分组,并重点介绍了组内负载分散和组间负载分散的实现过程;该方法通过采用改进的负载信息收集策略和作业转送策略,节省了系统资源,取得了良好的效果。 In general job management system, we always adopt the centralized load diversification strategy for load balancing. But the central controller is the system's bottleneck due to its inadequacy of being easy to cause a single point of failure, especially in the cloud computing environment, where there exist a huge number of servers, and the central controller will bear a very large load. Therefore, based on distributed group strategy, proposes a load balancing algorithm which groups the servers in the cluster system by geographical position, and focuses on the load balancing algorithm within the group and between groups. By using an improved load information collection strategy and job transferred strategy, the algorithm saves a lot of system resources and has achieved good results.
出处 《计算机测量与控制》 北大核心 2013年第2期467-469,共3页 Computer Measurement &Control
关键词 云计算 作业管理系统 负载均衡 cloud computing job management system load balancing
  • 相关文献

参考文献3

二级参考文献34

  • 1温钰洪,王鼎兴,郑纬民.异构机群系统中的最优处理机分配算法[J].计算机学报,1996,19(3):161-167. 被引量:8
  • 2金海.漫谈云计算[J].中国计算机学会通讯,2009,5(6):22-25.
  • 3英特尔开源软件技术中心,复旦大学并行处理研究所.系统虚拟化:原理与实现[M].北京:清华大学出版社,2009.
  • 4武永卫 黄小猛.云存储.中国计算机学会通讯,2009,5(6):44-52.
  • 5Luis M V, Luis R M, Juan C, et al. A break in the clouds: toward a cloud definition [J]. ACM SIGCOMM Computer Communication Review, 2009, 39 (1): 50-55.
  • 6Robert L G, Gu Y H, Michael S, et al. Compute and storage clouds using wide area high performance networks[J]. Future Generation Computer Systems, 2009, 25 (2) : 179- 183.
  • 7Gu Y H, Robert L G. Sector and sphere: the design and implementation of a high- performance data cloud [J].Philosophical Transactions of the Royal Society, 2009 (367): 2429-2445.
  • 8Daniel J A. Data management in the cloud: limitations and opportunities [J]. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2009, 32 (1) : 3 - 12.
  • 9Robert L G, Gu Y H. Data mining using high performance data clouds: Experimental studies using sector and sphere [A]. In: Proc of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining [C], 2008.
  • 10Zhang Y X, Zhou Y Z. 4VP ; a novel meta OS approach for streaming programs in ubiquitous computing [A]. In; Proe of IEEE the 21st Int' I Conf on Advanced Information Networking and Applications (AINA 2007) [C], Los Alamitoa, IEEE CS, 2007.

共引文献72

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部