期刊文献+

高维0-1瓶颈问题的动态规划算法

DYNAMIC PROGRAMMING ALGORITHM ON HIGHER-DIMENSIONAL 0-1 BOTTLENECK PROBLEMS
原文传递
导出
摘要 在本文中,我们通过一个实际问题归纳出一个数学模型(正文中的模型Ⅰ),并通过新变量的引用,韩模型Ⅰ转化成一个高维0-1瓶颈规划(正文中的模型Ⅱ).对模型Ⅱ,我们建立了求模型Ⅱ最优解的动态规划算法(带有阀值Q).该算法与普通动态规划相比大大节约了运算量.最后指出了该算法对0-1瓶颈问题的求解具有一定的普遍性. In this paper, we present the following mathematical model Ⅰ : max f (X) s.t.{∑ n j=1 xij=ai(i=1,2,…,m) xij≥0 integer(i=1,2,…,m;j=1,2,…,n) where X ={Xij},f(X)=min1≤j≤n{∑ m i=1xijxij},aiand cij are known positive integers. Model Ⅰ transform into the following model Ⅱ through quotation of new variables: maxg(Y) s.t.{∑ n j=1 yij=1(i=1,2,…,M;j=1,2,…,n)} where Y = {yij}, g(Y)=min≤j≤n{∑ m i=1wijyij},M=∑ m i=1aiand wij are known positive integers. Besides, the dynamic programming algorithm with a threshold Q is established for finding an optimal solution to model II. At last, we indicate the universality of this algorithm in finding higher-dimensional 0-1 bottleneck problems.
作者 罗宗俊
机构地区 贵州民族大学
出处 《数值计算与计算机应用》 CSCD 2013年第1期38-46,共9页 Journal on Numerical Methods and Computer Applications
关键词 0-1瓶颈问题 动态规划 阀值 0-1 bottleneck problem Dynamic Programming Threshold
  • 相关文献

参考文献11

  • 1Gross O. The Bottleneck Assignment Problem, The Rand Corporation, 1959, P-1630.
  • 2Ford L R, Jr and Fulkerson D R. Flows in Networks. Princeton University Press. New Jersey, 1962, 57-59.
  • 3Barsow A R. What is Linear Programming (Moscow, 1959), 90-101(in Russian).
  • 4Garfinkel R S. An Improved Algorithm for the Bottleneck Assignment Problem, Oper Res. 1971, 19.
  • 5Lawler E L. Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York, 1976.
  • 6Benjamin Lev and Howard J Weiss. Introduction Mathematical Programming, New York, 1982, 159-161.
  • 7Garfinkel R S and Nemhauser G L. Integer Programming, John Wiley and sons, 1972.
  • 8罗宗俊.一个m维整数瓶颈运输问题及其算法[J].数值计算与计算机应用,2001,22(1):63-70. 被引量:12
  • 9罗宗俊.一个二维整数瓶颈问题及其算法[J].数学杂志,1996,16(2):163-170. 被引量:3
  • 10林诒勋.最优化原理的逻辑基础[J].运筹学杂志,1992,11(1):24-27. 被引量:4

二级参考文献8

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部