期刊文献+

求解大型Stein方程的块Krylov子空间方法 被引量:1

BLOCK KRYLOV SUBSPACE METHODS FOR LARGE STEIN EQUATIONS
原文传递
导出
摘要 本文研究利用块Krylov子空间方法对大型Stein方程降阶求解,分别基于块Arnoldi方法与非对称块Lanczos方法,提出了块Arnoldi Stein方法与非对称块Lanczos Stein方法.数值实验表明提出的方法有效. This paper studies the block Krylov subspace methods for reduced order to solve large Stein equations, and propose the block Arnoldi Stein method and the nonsymmetric block Lanczos Stein method, which axe based on the block Arnoldi method and the nonsymmetric block Lanczos method, respectively. Numerical experiments show the effectiveness of proposed methods.
出处 《数值计算与计算机应用》 CSCD 2013年第1期47-58,共12页 Journal on Numerical Methods and Computer Applications
关键词 块Krylov子空间 块Arnoldi 块Lanczos 线性算子 Stein方程 Block Krylov subspace Block Arnoldi Block Lanczos Linear operator Stein equation
  • 相关文献

参考文献15

  • 1Datta B N, Datta K. Theoretical and computational aspects of some linear algebra problems in control theory, in: C.I. Byrnes, A. Lindquist (Eds.),Computational and Combinatorial Methodsin Systems Theory[J]. Elsevier, Amsterdam, 1986, 201-212.
  • 2Datta B N. Numerical Methods for Linear Control Systems: Design and Analysis [M], Elsevier Academic Press, Amsterdam, 2004.
  • 3Datta B. Numerical Methods for Linear Control Systems Design and Analysis[M]. Elsevier Press, 2003.
  • 4Calvetti D, Reichel L. Application of ADI iterative methods to the restoration of noisy images[J]. SIAM J. Matrix Anal. Appl., 1996, 17: 165-186.
  • 5Epton M. Methods for the solution of AXB - BXC = E and its applications in the numerical solution of implicit ordinary differential equations[J]. BIT, 1980, 20: 341-345.
  • 6Hyland C, Bernstein D. The optimal projection equations for fixed-order dynamic compensa- tion[J]. IEEE Trans. Contr., 1984, 29: 1034-1037.
  • 7Golub G H, Van Loan C F. Matrix Computations, third ed.[M]. Johns Hoplins U.P., Baltimore, 1996.
  • 8Bartels R H and Stewart G W. A solution of the equation AX XB = C [J]. Commun. ACM, 1972, 15: 820-826.
  • 9Golub G H, Nash S, Van Loan C F. A Hessenberg - Shur method for the problem AX + XB -- C[J]. IEEE Trans. Automat. Control, 1979, 24: 909-913.
  • 10Jbilou K. Low rank approximate solutions to large Sylvester matrix equations[J]. Appl. Math. Comp. 2006, 177: 365-376.

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部