摘要
Microstructure and creep behaviour of Mg-12Gd-3Y-1Zn-0.4Zr alloy prepared by squeeze casting were investigated. Transmission electron microscope (TEM) observation revealed that a kind of lamellar-shaped morphologies 14h long-period stacking order structure (LPSO) and dense β'-phase precipitates were formed by heat treatment. The alloy exhibited good creep resistance. It was shown that the creep-resistant performance kept stable because of the restriction of dense β'-phase precipitates and LPSO phases to the movement of dislocations, and the formation of β-phase plates took responsibility for the softening of material during creep. Stress and temperature dependence of the steady-state creep rate were studied over stress range of 50-100 MPa and a temperature range of 250-300 oC, and a dislocation creep mechanism was proposed for the alloy.
Microstructure and creep behaviour of Mg-12Gd-3Y-1Zn-0.4Zr alloy prepared by squeeze casting were investigated. Transmission electron microscope (TEM) observation revealed that a kind of lamellar-shaped morphologies 14h long-period stacking order structure (LPSO) and dense β'-phase precipitates were formed by heat treatment. The alloy exhibited good creep resistance. It was shown that the creep-resistant performance kept stable because of the restriction of dense β'-phase precipitates and LPSO phases to the movement of dislocations, and the formation of β-phase plates took responsibility for the softening of material during creep. Stress and temperature dependence of the steady-state creep rate were studied over stress range of 50-100 MPa and a temperature range of 250-300 oC, and a dislocation creep mechanism was proposed for the alloy.
基金
Project supported by Ningbo natural science foundation(2011A610156)