期刊文献+

自适应快速多极正则化无网格法求解大规模三维位势问题 被引量:4

Adaptive Fast Multipole Regularized Meshless Method for Large-Scale Three Dimensional Potential Problems
下载PDF
导出
摘要 正则化无网格法(regularized meshless method,RMM)是一种新的边界型无网格数值离散方法.该方法克服了近年来引起广泛关注的基本解方法(method of fundamental solutions,MFS)的虚假边界缺陷,继承了其无网格、无数值积分、易实施等优点.另一方面,RMM方法同MFS方法的插值方程都涉及非对称稠密系数矩阵,运用常规代数方程的迭代法求解时都要求O(N2)量级的乘法计算量和存储量.随着问题自由度的增加,该方法的计算量增加极快,效率较低,一般难以计算大规模问题.为了克服这个缺点,利用对角形式的快速多级算法(fast multipole method,FMM)来加速RMM方法,发展了快速多级正则化无网格法(fast multipole regularized mesheless method,FM-RMM).该方法无需数值积分并且具有O(N)量级的计算量和存储量,可有效地求解大规模工程问题.数值算例表明,FM-RMM算法可成功在内存为4GB的Core(TM)Ⅱ台式机上求解高达百万级自由度的三维位势问题. The regularized meshless method (RMM) is a new meshless boundary collocation method. This method overcame the perplexing fictitious boundary associated in the method of fundamental solutions (MFS), while inherited all its merits being truly meshless, integrationfree, and easy-to-program. Like the MFS, the RMM also produced dense and nonsymmetric coefficient interpolation matrix, which required O(N^2) multiplication operations and memory requirements in an iterative solution procedure. Since the calculation operations would dramatically increase with the number of DOF, the RMM was computationally too expensive to solve large-scale problems. In order to overcome this bottleneck, this study combined the RMM with the popular diagonal form fast multipole method (FMM) to develop the fast multipole regularized meshiess method (FM-RMM). The proposed scheme was integration-free and meshfree and significantly reduced the operations and the memory requirements to the order of 0 (N) and consequently could much efficiently solve large scale problems. Numerical examples illustrate that the present FM-RMM method can successfully solve three-dimensional potential problems with up to 1 million nodes on a Core(TM) II desktop with 4 GB memory.
出处 《应用数学和力学》 CSCD 北大核心 2013年第3期259-271,共13页 Applied Mathematics and Mechanics
基金 国家重点基础研究发展规划(973)资助项目(2010CB832702) 国家杰出青年科学基金资助项目(11125208)
关键词 快速多级算法 无网格 正则化无网格法 基本解方法 三维位势问题 fast multipole method mesbless regularized meshless method method of funda-mental solution threedimensional potential problems
  • 相关文献

参考文献4

二级参考文献41

共引文献29

同被引文献56

  • 1高效伟,Ch. Zhang.非均质问题中的无网格边界单元法[J].固体力学学报,2006(S1):62-69. 被引量:9
  • 2刘中宪,唐河仓,王冬.弹性波二维散射快速多极子间接边界元法求解[J].工程力学,2015,32(5):6-12. 被引量:4
  • 3刘登云,王剑波.用因式分解法求解薛定谔方程[J].大学物理,1990,9(7):13-15. 被引量:12
  • 4张耀明,吕和祥,王利民.位势平面问题的新的规则化边界积分方程[J].应用数学和力学,2006,27(9):1017-1022. 被引量:12
  • 5沈永明,郑永红,吴朝安.斜向波与任意多个长水平圆柱的相互作用[J].中国科学(E辑),2007,37(1):107-126. 被引量:2
  • 6Chen K H, Chen J T, Lin S Y, Lee Y T. Dual boundary element analysis of normal incident wave passing a thin submerged breakwater with rigid, absorbing and permeable boundaries [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering( ASCE) , 2004, 130(4) : 179-190.
  • 7Fairweather G, Karageorghis A. The method of fundamental solutions for elliptic boundary value problems[Jj. Advances in Computational Mathematics, 1998, 9(1/2) : 69-95.
  • 8Golberg M A, Chen C S, Ganesh M. Particular solutions of 3D Helmholtz-type equations using compactly supported radial basis functions [ J J. Engineering Analysis With Boundary Ele- ments, 2000, 24(7/8): 539-547.
  • 9Young D L, Chen K H, Lee C W. Novel meshless method for solving the potential problems with arbitrary domain[ J~. Journal of Computational Physics, 2005, 2{}9( 1 ) : 290-321.
  • 10Sarler I3. Solution of potential flow problems by the modified method of fundamental solu- tions : formnlations with the single layer and the double layer fundamental solutions/_ J 1. Engi- neering Analysis With Boundary Elements, 2009, 33(12) : 1374-1382.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部