期刊文献+

乙酸/丙酸作为EBPR碳源的动力学模型研究(Ⅱ)--动力学模拟 被引量:2

Kinetic Model of Enhanced Biological Phosphorus Removal with Mixed Acetic and Propionic Acids as Carbon Sources(Ⅱ): Process Simulation
原文传递
导出
摘要 以乙酸和丙酸作为混合碳源,采用2组序批式反应器(SBR)研究聚磷菌(PAO)和聚糖菌(GAO)代谢过程中的物质转化规律.PAO和GAO动力学模型共包含7个计量学参数和24个动力学参数.根据计量学方程,推导了PAO和GAO动力学模型中的计量学参数.结合试验结果,确定了动力学参数的取值.采用Matlab软件积分计算了PAO和GAO胞内物质的变化规律.SBR运行的实际值与模拟值相吻合,表明基于SCFAs代谢的动力学模型能够很好地模拟PAO和GAO的好氧/厌氧代谢过程. Two groups of sequencing batch reactors were used to study the metabolism substrate transformation of phosphorus- accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) fed with mixed acetic and propionic acids. Seven stoichiometry parameters and 24 kinetic parameters were contained in the PAO and GAO kinetic model, and stoichiometry parameters were deduced from the stoichiometry models, while kinetic parameters were determined by experimental results. The kinetic model parameters of stoichiometry and kinetics were determined according the experiments and the literature. Subsequently, the substrate transformations of PAO and GAO were calculated by the Matlab software. The model curves matched the SBR experimental data well, indicating that the kinetic model based on SCFAs metabolism could be used to simulate PAO and GAO in anaerobic-aerobic conditions.
作者 张超 陈银广
出处 《环境科学》 EI CAS CSCD 北大核心 2013年第3期998-1003,共6页 Environmental Science
基金 国家自然科学基金项目(50408039) 国家高技术研究发展计划(863)项目(2007AA06Z326) 中国石化基础科研项目(311047)
关键词 聚磷菌 聚糖菌 计量学参数 动力学参数 动力学模拟 phosphorus-accumulating organisms (PAO) glycogen-accumulating organisms (GAO) stoichiometry parameters kinetic parameters kinetic model
  • 相关文献

参考文献27

  • 1张超,陈银广.乙酸/丙酸作为EBPR碳源的动力学模型研究(Ⅰ)--模型的建立[J].环境科学,2013,34(3):993-997. 被引量:4
  • 2Tan Y H, Wang Z X, Marshall K C. Modeling pH effects on microbial growth: A statistical thermodynamic approach [ J ]. Biotechnology and Bioengineering, 1998, $9(6) : 724-731.
  • 3Yagci N, Insel G, Artan N, et al. Modelling and calibration of phosphate and glycogen accumulating organism competition for acetate uptake in a sequencing batch reactor[ J]. Water Science and Technology, 2004, 50(6): 241-250.
  • 4Henze M, Gujer W, Mino T, et al. Activated sludge model No. 2, IAWQ Scientific and technical report [ R ]. London: IAWQ, 1995.
  • 5Whang L M, Filipe C D M, Park J K. Model-based evaluation of competition between polyphosphate-and glycogen-accumulating organisms[ J]. Water Research, 2007, 41(6) : 1312-1324.
  • 6Zhang C, Cben Y G, Randall A A, et al. Anaerobic metabolic models for phosphorus-and glycogen-accumulating organisms with mixed acetic and propionic acids as carbon sources [ J]. Water Research, 2008, 42 (14) : 3745-3756.
  • 7张超.混合短链脂肪酸作为增强生物除磷碳源的计量学和动力学研究[D].上海:同济大学,2009.
  • 8Smolders G J F, Van der Meij J, Van Loosdrecht M C M, et al. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process [ J ]. Biotechnology and Bioengineering, 1994, 44(7) : 837-848.
  • 9Oehmen A, Zeng R J, Keller J, et al. Modeling the aerobic metabolism of polyphosphate-accumulating organisms enriched with propionate as a carbon source [ J]. Water Environmental Research, 2007, 79 ( 13 ) : 2477-2486.
  • 10Oehmen A, Zeng R J, Saunders A M, et al. Anaerobic and aerobic metabolism of glycogen-accumulating organisms selected with propionate as the sole carbon source [ J ]. Microbiology, 2006, 152(9) : 2767-2778.

二级参考文献25

  • 1张超,陈银广.增强生物除磷系统中微生物及其代谢机制研究进展[J].环境科学与技术,2010,33(10):81-85. 被引量:8
  • 2张亚雷 李咏梅.活性污泥数学模型[M].上海:同济大学出版社,2002..
  • 3Zhang C, Chen Y G, Randall A A, et al. Anaerobic metabolic models for phosphorus-and glycogen-accumulating organisms with mixed acetic and propionic acids as carbon sources [ J]. WaterResearch, 2008, 42( 14): 3745-3756.
  • 4Von Muench. E1 DSP prefermenter technology boo,[ M ]. Australia, Brcsbane Old: Science Traveller International CRC WMPC Lid, 1998.
  • 5Naik R V. Enhancement of denitrification using prefermenters in biological nutrient removal systems [ D ]. Orlando, FL : University of Central Florida, Orlando, FL, 1999.
  • 6Shah R R. Study of the performance of biological nutrient removal systems with and without prefermenters [ D ]. Orlando, FL: University of Central Florida, 2001.
  • 7Liu Y, Chen Y, Zhou Q. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids [J]. Chemosphere, 2007, 16( 1 ): 123- 129.
  • 8Henze M, Gujer W, Mino T, et al. Activated sludge model No. 2, IAWQ Scientific and technical report [ R ]. London: IAWQ, 1995.
  • 9Manga J, Ferrer J, Garcia-Usach F, et al. A modification to the activated sludge model No. 2 based on the competition between phosphorus - accumulating organisms and glycogen - accumulating organisms [ J ]. Water Science and Technology, 2001, 43(11): 161-171.
  • 10Yagci N, Insel G, Artan N, et al. Modelling and calibration of phosphate and glycogen accumulating organism competition for acetate uptake in a sequencing batch reactor[ J]. Water Science and Technology, 2004, 50(6) : 241-250.

共引文献35

同被引文献22

  • 1张超.混合短链脂肪酸作为增强生物除磷碳源的计量学和动力学研究[D].上海:同济大学,2009.
  • 2Thomas M, Wright P, Blackall L, et al. Optimisation of Noosa BNR plant to improve performance and reduce operating costs [ J]. Water Science and Technology, 2003, 47 (12) : 141- 148.
  • 3Tong J, Chen Y G. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation [ J ]. Environmental Science and Technology, 2007, 41(20) : 7126-7130.
  • 4Jiang S, Chen Y G, Zhou Q, et al. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant[ J]. Water Research, 2007,41(14) : 3112-3120.
  • 5Ucisik A S, Henze M. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids [J]. Water Research, 2008, 42( 14): 3729-3738.
  • 6Tong J, Chen Y G. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste aetivated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment [ J]. Water Research, 2009, 43 (12) : 2969-2976.
  • 7Zheng X, Tong J, Li H J, et al. The investigation of effect of organic carbon sources addition in anaerobic-aerobic (low dissolved oxygen) sequencing batch reactor for nutrients removal from wastewaters[ J]. Bioresource Technology, 2009, 100 (9) : 2515-2520.
  • 8Yuan Q, Oleszkiewicz J A. Biomass fermentation to augment biological phosphorus removal [ J]. Chemosphere, 2010, 78 (1) : 29-34.
  • 9Li X, Chen H, Hu L F, et al. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal[ J]. Environmental Science and Technology, 2011, 45 (5) : 1834-1839.
  • 10Gao Y Q, Peng Y Z, Zhang J Y, et al. Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A^2O process [ J]. Bioresource Technology, 2011, 102 ( 5 ) : 4091-4097.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部