期刊文献+

乙酸/丙酸作为EBPR碳源的动力学模型研究(Ⅲ)--模型的应用 被引量:1

Kinetic Model of Enhanced Biological Phosphorus Removal with Mixed Acetic and Propionic Acids as Carbon Sources(Ⅲ): Model Application
原文传递
导出
摘要 采用基于SCFAs代谢的动力学模型,模拟了不同碳源类型和不同m(P)/m(COD)对聚磷菌(PAO)和聚糖菌(GAO)竞争的影响.结果表明,以乙酸作为唯一碳源时,EBPR中的微生物种群结构基本保持反应器初始状态的生物组成,PAO或GAO都无法取得明显的竞争优势.但是,在进水中添加丙酸有利于PAO成为优势微生物,当丙酸占总酸的质量分数达到33%以上时,EBPR趋于稳定.当m(P)/m(COD)<0.01时,即使丙酸作为EBPR的碳源,GAO仍占(PAO+GAO)总量的95%以上.为了使PAO占有优势,进水m(P)/m(COD)应该控制在0.04~0.10之间. The kinetic model based on SCFAs metabolism was applied for the prediction of phosphorus-and glycogen-accumulating organisms (PAO and GAO) competition with different carbon sources and m(P)/m(COD) ratios. When acetic acid was used as the sole carbon source, the biomass compositions were almost the same as those before cultivation, and neither PAO nor GAO could be out- competed from EBPR. However, increasing propionic acid in the influent helped PAO to be the predominance organism, and EBPR performance kept excellent when the ratio of propionate to mixed acids ( acetate + propionate) was higher than O. 33. It also found that the m( P)/m(COD) ratio should be kept at 0.04-0. 10 to avoid phosphorus became a limiting factor for PAO growth. This was because at low m (P)/m (COD) ratios, such as 0.01, GAO would take up 95% of the total (PAO + GAO) biomass.
作者 张超 陈银广
出处 《环境科学》 EI CAS CSCD 北大核心 2013年第3期1004-1007,共4页 Environmental Science
基金 国家自然科学基金项目(50408039) 国家高技术研究发展计划(863)项目(2007AA06Z326) 中国石化基础科研项目(311047)
关键词 聚磷菌 聚糖菌 动力学模拟 竞争 优势菌属 phosphorus accumulating organisms (PAO) glycogen accumulating organisms (GAO) kinetic simulatlon competition predominance biomass
  • 相关文献

参考文献3

二级参考文献51

  • 1张超,陈银广.增强生物除磷系统中微生物及其代谢机制研究进展[J].环境科学与技术,2010,33(10):81-85. 被引量:7
  • 2张亚雷 李咏梅.活性污泥数学模型[M].上海:同济大学出版社,2002..
  • 3Zhang C, Chen Y G, Randall A A, et al. Anaerobic metabolic models for phosphorus-and glycogen-accumulating organisms with mixed acetic and propionic acids as carbon sources [ J]. WaterResearch, 2008, 42( 14): 3745-3756.
  • 4Von Muench. E1 DSP prefermenter technology boo,[ M ]. Australia, Brcsbane Old: Science Traveller International CRC WMPC Lid, 1998.
  • 5Naik R V. Enhancement of denitrification using prefermenters in biological nutrient removal systems [ D ]. Orlando, FL : University of Central Florida, Orlando, FL, 1999.
  • 6Shah R R. Study of the performance of biological nutrient removal systems with and without prefermenters [ D ]. Orlando, FL: University of Central Florida, 2001.
  • 7Liu Y, Chen Y, Zhou Q. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids [J]. Chemosphere, 2007, 16( 1 ): 123- 129.
  • 8Henze M, Gujer W, Mino T, et al. Activated sludge model No. 2, IAWQ Scientific and technical report [ R ]. London: IAWQ, 1995.
  • 9Manga J, Ferrer J, Garcia-Usach F, et al. A modification to the activated sludge model No. 2 based on the competition between phosphorus - accumulating organisms and glycogen - accumulating organisms [ J ]. Water Science and Technology, 2001, 43(11): 161-171.
  • 10Yagci N, Insel G, Artan N, et al. Modelling and calibration of phosphate and glycogen accumulating organism competition for acetate uptake in a sequencing batch reactor[ J]. Water Science and Technology, 2004, 50(6) : 241-250.

共引文献6

同被引文献21

  • 1张超.混合短链脂肪酸作为增强生物除磷碳源的计量学和动力学研究[D].上海:同济大学,2009.
  • 2Thomas M, Wright P, Blackall L, et al. Optimisation of Noosa BNR plant to improve performance and reduce operating costs [ J]. Water Science and Technology, 2003, 47 (12) : 141- 148.
  • 3Tong J, Chen Y G. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation [ J ]. Environmental Science and Technology, 2007, 41(20) : 7126-7130.
  • 4Jiang S, Chen Y G, Zhou Q, et al. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant[ J]. Water Research, 2007,41(14) : 3112-3120.
  • 5Ucisik A S, Henze M. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids [J]. Water Research, 2008, 42( 14): 3729-3738.
  • 6Tong J, Chen Y G. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste aetivated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment [ J]. Water Research, 2009, 43 (12) : 2969-2976.
  • 7Zheng X, Tong J, Li H J, et al. The investigation of effect of organic carbon sources addition in anaerobic-aerobic (low dissolved oxygen) sequencing batch reactor for nutrients removal from wastewaters[ J]. Bioresource Technology, 2009, 100 (9) : 2515-2520.
  • 8Yuan Q, Oleszkiewicz J A. Biomass fermentation to augment biological phosphorus removal [ J]. Chemosphere, 2010, 78 (1) : 29-34.
  • 9Li X, Chen H, Hu L F, et al. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal[ J]. Environmental Science and Technology, 2011, 45 (5) : 1834-1839.
  • 10Gao Y Q, Peng Y Z, Zhang J Y, et al. Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A^2O process [ J]. Bioresource Technology, 2011, 102 ( 5 ) : 4091-4097.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部