期刊文献+

基于树状稀疏模型的视觉传感器网络图像数据重构 被引量:1

Image Reconstruction Algorithm Based on Tree Sparsity Model for Visual Sensor Network
下载PDF
导出
摘要 针对现有压缩感知算法无法有效利用视觉传感器网络中图像数据相关性的问题,提出一种基于树状稀疏模型的视觉传感器网络数据压缩感知算法。在分析图像数据小波域稀疏特性的基础上,构建了一种视觉传感器网络图像数据的树状稀疏模型,进而针对此模型设计一种新的压缩感知重构算法。理论分析和实验结果表明,相比于传统图像数据压缩感知算法,该算法可有效利用图像数据相关性减少准确重构图像数据所需的测量值,降低视觉传感器网络数据传输能耗。 A tree sparsity model based image compressed sensing (CS) algorithm was proposed to efficiently explore the correlation in visual sensor networks (~SN) data. Based on the analysis of wavelet sparsity, a tree sparsity model for VSN image was established and a new CS recovery algorithm for this model was proposed. Analysis and experimental results demonstrate that the proposed algorithm can significantly reduce the measurement for the accurate recovery, and subsequently lower energy consumption of data traffic in VSN.
出处 《电信科学》 北大核心 2013年第2期64-69,共6页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61173130 No.30900358/C100701) 国家自然科学基金子课题资助项目(No.0073248)
关键词 视觉传感器网络 压缩感知 树状稀疏性 数据重构 visual sensor network, compressed sensing, tree sparsity, data reconstruction
  • 相关文献

参考文献13

  • 1Misra S, Reisslein M, Xue G. A survey of muhimedia streaming in wireless sensor networks. IEEE Communications Surveys and Tutorials, 2008( 10): 18-39.
  • 2Charfi Y, Wakamiya N, Murata M. Ch',dlenging issues in visual sensor networks. Teehnical Report, Advanced Network Architecture. Laboratory, Osaka University, 2007.
  • 3Donoho D. Compressed sensing. IEEE Transactions Information Theory, 2006, 52(4): 1289-1306.
  • 4Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. 1EEE Transactions on hfformation Theory, 2006, 52(4): 489-509.
  • 5石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712
  • 6Chen S, Donoho D. Saunders M. Atomic decomposition by basis pursuit. SIAM Journal on Seientific Computing, 1999, 20(1): 33-61.
  • 7Kim S, Koh K, Lustig M, et al. An interior-point method fior large-seale 11 regularized least squares. IEEE Journal of Selected Topics in Signal Proeessing, 2007, 1(4): 606-617.
  • 8Trupp J, Gillbert A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on hffonnation Theury, 2007, 53(12): 4655-4666.
  • 9Donoho D L, Tsaig Y, Drori 1, et td. Sparse solution of underdetermined linear equations by stage-wise orlhogonal matching pursuit. Technical Report, Mar 2006.
  • 10Dai W, Milenkovic O. Subspace pursuit for compressive sensing: closing the gap between perfornmnce and complexity. IEEE Transactions on hfformation Theory, 2009, 55(5): 2230-2249.

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献711

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部