期刊文献+

基于正交设计与人工神经网络模型的醋酸菌A3菌株醋酸发酵条件优化 被引量:11

Optimization of acetic acid fermentation condition of Acetobacter A3 based on orthogonal design coupled with artificial neural networks model
下载PDF
导出
摘要 以甘肃传统食醋酿造过程中分离得到的1株优势产酸醋酸菌A3为出发菌株,采用正交设计与人工神经网络模型相结合的方法优化其发酵条件以提高产酸量。用正交实验中的因素水平组合作为ANN的输入变量,用产酸量作为输出变量,正交实验数据作为建立BP网络模型的训练样本,另外两组实验(17号、18号)用于检验模型的泛化能力,并运用建立好的人工神经网络模型在正交实验分析基础上寻找最佳发酵条件。实验结果表明,该菌株A3醋酸发酵最佳条件为:初始乙醇浓度4.2%(v/v)、发酵温度30℃、起始pH6.4、发酵周期8d,在此条件下的产酸量明显高于正交实验中的最高产酸量,达到4.3086g/100mL。 A bacterium strain A3 producing acetic acid was isolated from the traditional brewing process of Gansu vinegar.The optimization method based on orthogonal design coupled with artificial neural networks model(ANN) was employed to select fermentation conditions for increasing the yield of acetic acid.The combinations of factor and level in the orthogonal design were used as the input variables, and the content of acid as the output for building the ANN model.The sixteen tests data were used as BP architecture training samples,and two other test results( No.17 and No.18)were used to examine the generalization capability of the model.Finally,the established ANN was applied to the optimization of fermentation conditions.The results showed that the optimized fermentation conditions for acetic acid production of this Acetobacter A3 were found to be 4.2% (v/v)alcohol,30℃, pH6.4 and 8d fermentation time.Under the conditions,the content of acetic acid was superior to orthogonal test,increasing to 4.3086g/100mL.
出处 《食品工业科技》 CAS CSCD 北大核心 2013年第5期142-146,150,共6页 Science and Technology of Food Industry
基金 甘肃省教育厅科学研究基金资助项目(0902-06)
关键词 醋酸菌 正交设计 人工神经网络模型 醋酸发酵条件 优化 Acetobacter orthogonal design artificial neural network acetic acid fermentation condition optimization
  • 相关文献

参考文献17

  • 1安志刚,贠建民,张蕊,冯平.凉州熏醋传统酿造过程中代谢产物动态变化分析[J].食品科学,2011,32(9):198-203. 被引量:3
  • 2包启安.醋酸菌与其发酵的机理[J].中国调味品,1989(8):1-3. 被引量:9
  • 3Ashok Pandey. Solid - state fermentation [ J ] . Biochemical Engineering Journal, 2003,13 : 81-84.
  • 4Kiran M Desai, Bhalchandra K Vaidya, Rekha S Singhal.Use of an artificial neural network in modeling yeast biomass and yield of β- glucan[J].Process Biochemistry ,2005,40:1617-1626.
  • 5C R CHEN, H S RAMASWAMY, S O PRASHER. Dynamic modeling of retort processing using neural networks [ J] .Journal of Food Processing and Preservation ,2002,26 (2) :91-112.
  • 6James S, Legge R, Buddman H.Comparitive study of black box and hybrid estimation methods in fed batch fermentation [ J ]. J Process Control ,2002,12 : 113-121.
  • 7Kurtanjek Z. Principal component ANN: for modeling and control of baker' s yeast production [ J ]. J Bitechnol, 1998,65 : 23 -35.
  • 8Ferriera LS, De Souza Jr MB, Folly ROM. Development of an alcohol fermentation control system based on biosensor measurement interpreted by neural networks [ J ]. Sens Actuators, 2001,75 : 166-171.
  • 9Y- H Zhu, T Raj alahti, S Linko. Application of neural networksto lysine production[J ] .The Chemical Engineering Journal, 1996, 62:207-214.
  • 10G S MITTAL, J ZHANG.Use of artificial neural network to predict temperatures, moisture and fat in slab-shaped food with edible coating during deep- fat frying [ J ]. Journal of Food Science, 2000,65 (6) :978-983.

二级参考文献39

共引文献34

同被引文献135

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部