期刊文献+

热超构材料的研究进展 被引量:6

Research progress in thermal metamaterials
原文传递
导出
摘要 由于光波、声波、地震波和水波都遵循波动方程,所以,2006年光学隐身衣(optical cloak)原理在Science杂志上发表后,光学隐身衣的设想很快就从最初的光波推广到了声波、地震波和水波,至今方兴未艾。由于热传导满足的是扩散方程,并且波动方程与扩散方程在物理机制上迥异,这就使得把光学隐身衣推广到热学隐身衣的尝试不得不面临来自原理上的挑战,可能也正因为如此,国际上对热超构材料的研究非常缓慢:早在2008年,就有学者在光学隐身衣的启发下,通过有限元模拟,揭示了热学隐身衣和热流反转等反常热功能或热现象,从而提出热超构材料(thermal metamaterial)的概念,但是,直到2012年,这个概念才被实验验证。由于其中蕴含着巨大的潜在应用价值,该实验工作发表后,热超构材料开始得到国际同行的广泛关注。文章的主要目的就是向读者介绍这一类新型功能材料——热超构材料的物理原理、发展历程及其理论和实验研究进展。 The principle of optical cloaking, first published in Science in 2006, has been quickly extended from light waves to acoustic, seismic, and water waves, as they all obey the wave equations. Because thermal conduction satisfies diffusion equations as well as wave equations, and the former have different physical mechanisms, the extension from optical cloaking to thermal cloak- ing is a greater challenge. Thus, research on thermal metamaterials has been very slow. As early as in 2008, various counter-intuitive functions and properties like thermal cloaks and thermal inverters were proposed on the basis of finite element simulations, and the concept of thermal metamaterials was introduced. However, this concept was only demonstrated experimentally in 2012. On account of their potential applications, thermal metameterials soon received much attention from the internation- al community. The main aim of this review is to describe this new type of functional material- thermal metamaterials. We shall present an overview of their physical principles, history, and prog- ress in both theoreical and experimental research.
出处 《物理》 CAS 北大核心 2013年第3期170-180,共11页 Physics
基金 国家重点基础研究发展计划(批准号:2011CB922004) 国家自然科学基金(批准号:11075035 11222544) 霍英东教育基金(批准号:131008)资助项目 上海科委启明星项目(批准号:12QA1400200)
关键词 热超构材料 物理原理 研究进展 thermal metamaterial, physical principle, research progress
  • 相关文献

参考文献1

共引文献32

同被引文献91

  • 1张大刚.深海油田的开发——当前国际应用及发展趋势[J].中国造船,2005,46(4):41-46. 被引量:12
  • 2王志松.能干的小引擎——纳米马达[J].自然杂志,2006,28(3):160-163. 被引量:5
  • 3V.G. Veselago. The electrodynamics of substances with simultaneously negative values [J]. Soviet Physics Uspekhi 10,509-514 (1968).
  • 4J.B. Pendry, D. Schurig, and D. R. Smith. Controlling electromagnetic fields [J]. Science 312,1780(2006).
  • 5A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta. Performing mathematical operations with metamaterials. Science 343,160(2014).
  • 6N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M. T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, and H.T. Chen. Terahertz metamaterials for linear polarization conversion and anomalous refraction [J]. Science 340,1304 (2013).
  • 7T. Xu, A. Agrawal, M. Abashin, K.J. Chau, and H. J. Lezec, All-angle negative refraction and active fiat lensing of ultraviolet light [J]. Nature 497,470(2013).
  • 8A.V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces", Science 339,1232009(2013).
  • 9Z.Y. Liu, X.X. Zhang, Y.W. Mao, Y. Y. Zhu, Z. Y. Yang, C. T. Chan, and P. Sheng. Locally resonant sonic materials [J]. Science 289,1734(2000).
  • 10M. Wegener. Metamaterials beyond optics [J]. Science 342, 939(2013).

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部