期刊文献+

一种基于隶属度优化的演化聚类算法 被引量:8

A Membership Degree Refinement-Based Evolutionary Clustering Algorithm
下载PDF
导出
摘要 针对FCM中数据点隶属度的计算是影响算法执行效率的主要因素,提出一种新的加速FCM算法(accelerated fuzzy C-means,AFCM),用于加速FCM及基于FCM的演化聚类算法.AFCM算法采用抽样初始化操作,产生较好的初始聚类中心,对于拥有较大隶属度的数据点,通过一步k-means操作更新模糊聚类中心,同时仅更新小隶属度来达到加速FCM算法的目的.为了验证所提出方法的有效性并提高聚类算法的效率,将AFCM应用于基于演化算法的模糊聚类算法.实验表明,此方法在保持良好的聚类结果前提下,能够减少大规模数据集上聚类算法的计算时间. Though FCM has already been widely used in clustering, its alternative calculation of the membership and prototype matrix causes a computational burden for large-scale data sets. An efficient algorithm, called accelerated fuzzy C-means (AFCM), is presented for reducing the computation time of FCM and FCM-based clustering algorithms. The proposed algorithm works by sampling initiation to generate better initial cluster centers, and motivated by the observation that there is the increasing trend for large membership degree values of data points at next iteration, updating cluster center using one step k-means for those data points with large membership degree values and only updating membership of data points with small values at next iteration. To verify the effectiveness of the proposed algorithm and improve the efficiency of EA for fuzzy clustering, AFCM also is applied to fuzzy clustering algorithms based on EAs, such as differential evolution (DE) and evolutionary programming (EP), to observe their performances. Experiments indicate that with a small loss of quality, the proposed algorithm can significantly reduce the computation time of clustering.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第3期548-558,共11页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60973075 61272186) 工信部基础科研计划基金项目(B0720110002) 黑龙江省自然科学基金项目(F200937)
关键词 聚类 模糊C-均值 隶属度 演化算法 混合策略 clustering fuzzy C-means membership degree evolutionary algorithm (EA) mixedstrategy
  • 相关文献

参考文献21

  • 1Andrew W Moore. Very fast EM-based mixture model clustering using multi-resolution kd-trees [C]//Proc of the 1998 Conf on Advances in Neural Information Processing Systems II. Cambridge, MA: MIT, 1999:543-549.
  • 2Muja M, Lowe D. Fast approximate nearest neighbors with automatic algorithm configuration [C] //Proc of the 2009 Int Conf on Computer Vision Theory and Applications. Porto, Portugal.. The Institute for Systems and Technologies of Information, Control and Communication (INSTICC), 2009: 331-340.
  • 3Buhler J. Efficient large-scale sequence comparison by locality sensitive hashing [J]. Bioinformatics, 2001, 12(5): 419-428.
  • 4Zhang Tian, Ramakrishnan R, Livny M. Birch: An efficient data clustering method for very large databases [C] //Proc of the 15th ACM SIGACT-SIGMOD-SIGART Syrup on Principles of Database System. New York: ACM, 1996, 25 (2): 103-114.
  • 5Anil K J. Data clustering 50 years beyond k-means [J]. Pattern Recognition Letters, 2010, 31(8): 651-666.
  • 6Har-peled S, Mazumdar S. On coresets for k-means and k-median clustering [C] //Proc of the 36th Annual ACM Symp Theory Computing (2004). New York: ACM, 2004: 291-300.
  • 7王璐,蔡自兴.改进的快速FCM算法[J].小型微型计算机系统,2005,26(10):1774-1777. 被引量:7
  • 8Steven E, Jing W K, Lawrence O, et al. Fast accurate fuzzy clustering through data reduction [J]. IEEE Trans on Fuzzy Systems, 2003, 11(2):262-270.
  • 9Ming Chaochiang, Chun Weitsai, Chu Singyang. A time- efficient pattern reduction algorithm for k-means clustering [J]. Information Sciences, 2011, 181 (4): 716-731.
  • 10Bradley P, Fayyad U, Reina C, et al. Scaling clustering algorithms to large databases [C]//Proc of the 4th Int Conf on Knowledge Discovery and Data Mining. Menlo Park, AAAI: 1998:9-15.

二级参考文献16

  • 1刘健庄,谢维信.高效的彩色图像塔形模糊聚类分割方法[J].西安电子科技大学学报,1993,20(1):40-46. 被引量:5
  • 2叶秀清,顾伟康,肖强.快速模糊分割算法[J].模式识别与人工智能,1996,9(1):66-70. 被引量:27
  • 3Sheikholeslami G,Proceedings of the 2 4th VL DB Conference,1998年,428页
  • 4Zhang W,Proceedings of the 2 3rd VL DB Conference,1997年,186页
  • 5Chen M S,IEEE Transactions on Knowledge andData Engineering,1996年,8卷,6期,866页
  • 6Ester M,Proceedings of the 2nd International Conference on Knowledge Discovering in Data,1996年,226页
  • 7Zhang T,Proceedings of the ACM SIGMOD International Conference on Management of Data,1996年,103页
  • 8Ng R T,Proceedings of the2 0 th VL DB Conference,1994年,144页
  • 9Frank H oppner, Frank Klawonn. A new approach to fuzzy partitioning [A]. Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference[C], Vancouver, Canada: 2001. 1419-1424.
  • 10Yingkang Hu, Richard J Hathaway. On efficiency of optimization in fuzzy c-means[J]. Neural,Parallel&Scientific Computations, June 2002,10(2) :141-156.

共引文献110

同被引文献96

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部