期刊文献+

改进相似度的仿射传播聚类算法 被引量:3

Affinity Propagation Clustering Based on New Similarity
下载PDF
导出
摘要 对舰船三维模型进行视点空间均匀投影,投影图像存在信息冗余,聚类技术是消除冗余投影的方法之一.由于缺少舰船投影的聚类知识,为了避免聚类结果受限于初始类代表点选择的缺点,研究了仿射传播聚类算法,首先提取所有投影图像特征,然后将所有特征进行归一化处理并作为初始聚类中心,提出了用空间向量模型计算特征相似度的方法,合并相似特征对应的投影图像,最后用聚类中心特征表示舰船目标.为了进一步验证改进相似度聚类算法的聚类质量,进行了聚类有效性分析,实验表明改进算法聚类质量好于原算法. The projection images have redundancy information with even sampling ship 3D model in the view point space.Clustering technique is one of the methods for removing of redundant projections.Affinity propagation clustering can be used to divide all the views into a series of aspect ones,and overcome lacking of clustering knowledge and the weakness of selection initial parameters.Firstly extracting features from projections,then normalizing all the features and taking all the views as initial clustering centers.The paper introduced space vector model to compute similarity between views,and combined similar characteristics.At last obtained cluster centers for a ship.Assembling clustering validity index analysis,the improved algorithm is better than the original one in the clustering quality with experimental data.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第3期602-605,共4页 Journal of Chinese Computer Systems
基金 国家"八六三"自然科学创新基金项目(2010AAJ133 2011AAJ211)
关键词 目标识别 聚类 相似度 视图 特征 target recognition clustering similarity views feature
  • 相关文献

参考文献7

二级参考文献42

  • 1姚昕,夏良正.一种基于IFFT的小波矩的快速算法[J].南京理工大学学报,2002,26(S1):67-70. 被引量:4
  • 2金琪,戴汝为.基于矩表示的小波不变量[J].模式识别与人工智能,1995,8(3):179-187. 被引量:14
  • 3Shotton J,Winn J,Rother C,et al.TextonBoost:Joint Appearance,Shape and Context Modeling for Multi-class Object Recognition and Segmentation[C]//Proc.of European Conf.on Computer Vision.[S.1.]:Springer,2006:1-15.
  • 4Win J,Criminisi A,Minka T.Object Categorization by Learned Universal Visual Dictionary[C]//Proc.of IEEE Int'l.Conf.on Computer Vision.Beijing,China:[s.n.],2005:1800-1807.
  • 5Frey B J,Dueck D.Clustering by Passing Messages Between Data Points[EB/OL].(2007-02-20).http://www.psi.toronto.edu/affinity propagation/FmyDueckScience07.pdf.
  • 6Torralba A,Murphy K P,Freeman W T.Sharing Visual Features for Multiclass and Multiview Object Detection[J].IEEE Transactions on Pattern on Pattern Analysis and Machine Intelligence,2007,19(5):854-869.
  • 7C. C. Aggrawal, P. S. Yu. Finding generalized projected clustersin high dimensional spaces. The SIGMOD'00, Dallas, 2000.
  • 8M. Dash, H. Liu. Feature selection for clustering. The PAKDD-00, Kyoto, 2000.
  • 9F. Sebastiani. Machine learning in automated text categorization.ACM Computin Surveys, 2002, 34(1): 1--47.
  • 10Y. Yang, J. O. Pedersen. A comparative study on featureselection in text categorization. The ICML97, Nashville, 1997.

共引文献342

同被引文献16

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部