期刊文献+

含铁粉尘碳酸化反应动力学研究 被引量:1

Study on Carbonation Reaction Kinetics of Ferrous Dust
原文传递
导出
摘要 通过热重实验对含铁粉尘碳酸化反应动力学进行了研究,建立了碳酸化反应的未反应收缩核模型,分析了反应温度对反应控制阶段动力学特性参数的影响规律.结果表明,提高反应温度有利于碳酸化球团的转化;碳酸化反应温度由400℃升高到600℃时,CaO转化率明显增大,800℃达到最大;碳酸化反应的总速率受到内扩散和界面化学反应共同控制,反应前期化学反应为限制环节,反应速率较快,反应后期内扩散为限制环节,反应速率变慢;在200~800℃的反应活化能为11.091kJ/mol. The carbonation reaction kinetics of ferrous dust was studied using thermal experiment for carbonate pellets. The un-reacted shrinking core model for carbonation reaction was set. The influence of reaction temperature on reaction kinetics parameters in the reaction control stage was analyzed. The results showed that raising reaction temperature was beneficial to transformation of carbonation pellets. While the temperature rising from 400 ℃ to 600 ℃, the conversion rate of CaO increased obviously, and reached the highest at 800 ℃. The total rate of carbonation reaction was controlled by internal diffusion and interracial chemical reaction together. The reaction was controlled by chemical reaction in the initial reaction stage, the reaction rate was faster. Then the reaction was controlled by internal diffusion, the rate slowed down. At the temperatures of 200-800℃, its activation energy was 11.09 kJ/mol.
出处 《过程工程学报》 CAS CSCD 北大核心 2013年第1期83-87,共5页 The Chinese Journal of Process Engineering
基金 国家自然科学基金资助项目(编号:51074061) 河北省自然科学基金-钢铁联合基金资助项目(编号:E2011209039)
关键词 含铁粉尘 碳酸化反应 转化率 未反应收缩核模型 动力学 ferrous dust carbonation reaction conversion rate unreacted shrinking core model kinetics
  • 相关文献

参考文献12

  • 1包炜军,李会泉,张懿.温室气体CO_2矿物碳酸化固定研究进展[J].化工学报,2007,58(1):1-9. 被引量:40
  • 2韩龙,王勤辉,马强,余春江,骆仲泱,岑可法.加压条件下CaO碳酸化反应动力学研究[J].中国电机工程学报,2009,29(14):41-46. 被引量:7
  • 3Manovic V, Anthony E J, Loncarevic D. CO2 Looping Cycles with CaO-based Sorbent Pretreated in CO2 at High Temperature [J]. Chem. Eng. Sci., 2009, 64: 3236-3245.
  • 4Sun P, Grace J R, Lim C J, et al. Determination of Intrinsic Rate Constants of the CaO-CO2 Reaction [J]. Chem. Eng. Sci., 2008, 63: 47-56.
  • 5Shimizu T, Hirama T, Hosoda H, et al. A Twin-fluid Bed Reactor for Removal of CO2 from Combustion Processes [J]. Chem. Eng. Res.Des., 1999, 77(1): 62-68.
  • 6Kato Y, Saku D, Harada N, et al. Utilization of High Temperature Heat from Nuclear Reactor Using Inorganic Chemical Heat Pump [J]. Prog. Nucl. Energy, 1998, 32(3/4): 563-570.
  • 7Abanades J C, Alvarez D. Conversion Limits in the Reaction of CO2 with Lime [J]. Energy Fuels, 2003, 17(2): 308-315.
  • 8Abanades J C, Anthony E J, Wang J S, et al. Fluidized Bed Combustion Systems Integrating CO2 Capture with CaO [J]. Environ. Sci. Technol., 2005, 39(8): 2861-2866.
  • 9Lee D K. An Apparent Kinetic Model for the Carbonation of Calcium Oxide by Carbon Dioxide [J]. Chem. Eng. J., 2004, 100(1/3): 71-77.
  • 10Lee D K. An Apparent Kinetic Model for the Carbonation of Calcium Oxide by Carbon Dioxide [J]. Chem. Eng. J., 2004, 100(1/3): 71-77.

二级参考文献24

  • 1王少立.直面《京都议定书》——《京都议定书》的过去、现在和将来[J].国际石油经济,2005,13(2):14-16. 被引量:8
  • 2王智化,王勤辉,骆仲泱,周俊虎,樊建人,岑可法.新型煤气化燃烧集成制氢系统的热力学研究[J].中国电机工程学报,2005,25(12):91-97. 被引量:35
  • 3关键,王勤辉,骆仲泱,岑可法.新型近零排放煤气化燃烧利用系统的优化及性能预测[J].中国电机工程学报,2006,26(9):7-13. 被引量:24
  • 4Squires A M. Cyclic use of calcined dolomite to desulfurize fuels undergoing gasification[J]. Adv. Chem. Ser., 1967(69): 205-229.
  • 5Ziock H J, Lackner K S, Harrison D P. Zero emission coal power, a new concept[C]. The First National Conference on Carbon Sequestration, Washington, DC, USA, 2001.
  • 6Rizeq R G, Lyon R K, Zamansky V M. Fuel-flexible AGC technology for H2, power, and sequestration-ready CO2[C]. The 26th International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, Florida, USA, 2001.
  • 7Lin S Y, Suzuki Y, Hatano H, Harada M. Hydrogen production from hydrocarbon by integration of water-carbon reaction and carbon dioxide removal(HyPr-RING method)[J]. Energy and Fuels, 2001, 15(2): 339-343.
  • 8Wang Zhihua, Zhou Junhu, et al. Thermodynamic equilibrium analysis of hydrogen production by coal based on Coal/CaO/H2O gasification system[J]. International Journal of Hydrogen Energy, 2006, 31(7): 945-952.
  • 9Guan Jian, Wang Qinhui, et al. Thermodynamic analysis of a biomass anaerobic gasification process for hydrogen production with sufficient CaO[J]. Renewable Energy, 2007, 32(15): 2502-2515.
  • 10Shimizu T, Hirama T, Hosoda H, et al. A twin fluid-bed reactor for removal of CO2 from combustion processes[J]. Chemical Engineering Research and Design, 1999, 77(1): 62-68.

共引文献45

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部