期刊文献+

产乙醇基因工程集胞藻的盐胁迫响应 被引量:2

Response of Genetically Engineered Synechocystis sp.to Salt Concentration for Production of Ethanol
原文传递
导出
摘要 采用含不同浓度NaCl的培养基培养产乙醇基因工程集胞藻,研究盐胁迫对其细胞生长和乙醇产量的影响,并探讨其响应机制.结果表明,随培养液中NaCl浓度提高,藻生长速率降低;盐胁迫损伤细胞光反应中心II的活性,抑制细胞的光合作用;盐浓度大于10g/L时,呼吸作用略有提高.随盐浓度提高,集胞藻的内源性代谢产物乙醇产量显著提高,在20g/L NaCl中培养,乙醇产量较对照提高91.8%.在盐胁迫条件下,基因工程集胞藻通过调节光合作用和呼吸作用效率、提高乙醇脱氢酶的活性而提高内源性的代谢以应对胁迫,同时提高乙醇产量. The effects of NaCI concentration on ethanol production and biological response in genetically engineered cyanobacteria Synechocystis sp. PCC 6803 Syn-ZG25 were studied. The Syn-ZG25 grew in BG11 medium containing various NaC1 concentrations, resulting in decreased growth rate, photosystem II activity and photosynthesis rate with increasing of salt concentration. For Syn-ZG25 growing in more than 10 g/L NaC1, dark respiration rate increased. With increasing of salt concentration, catabolism of endogenous carbohydrate increased, and ethanol excretion rate increased accordingly. The ethanol yield of Syn-ZG25 growing in 20 g/L NaC1 was increased substantially by 91.8% to that in the control medium without NaC1. These results indicated that the Synechocystis sp. PCC 6803 Syn-ZG25 could regulate photosynthesis and respiration rates, presumably enhance catabolism of endogenous carbohydrate by enhancing activity of alcohol dehydrogenase, as the response to salt stress, and then resulting in the increase of ethanol yield.
出处 《过程工程学报》 CAS CSCD 北大核心 2013年第1期129-133,共5页 The Chinese Journal of Process Engineering
基金 国家高技术研究发展计划(863)基金资助项目(编号:2012AA052103)
关键词 基因工程集胞藻 乙醇 盐胁迫 生物液体燃料 genetically engineered cyanobacteria ethanol salt stress liquid biofuel
  • 相关文献

参考文献18

  • 1Luo D, Hu Z, Choi D G et al. Life Cycle Energy and Greenhouse Gas Emissions for an Ethanol Production Process Based on Blue-green Algae [J]. Environ. Sci. Technol., 2010, 44(22): 8670-8677.
  • 2Deng M D, Coleman J R. Ethanol Synthesis by Genetic Engineering in Cyanobacteria [J]. Appl. Environ. Microbiol., 1999, 65(2): 523-528.
  • 3Dexter J, Fu P. Metabolic Engineering of Cyanobacteria for Ethanol Production [J]. Energy Environ. Sci., 2009, 2(8): 857-864.
  • 4Woods R P, Smith C R, Kramer D, et al. Genetically Modified Cyanobacteria for the Production of Ethanol [P]. US Pat.: 20100068776A1, 2010-03-18.
  • 5Gao Z, Zhao H, Li Z, et al. Photosynthetic Production of Ethanol from Carbon Dioxide in Genetically Engineered Cyanobacteria [J]. Energy Environ. Sci., 2012, 5(12): 9857-9865.
  • 6Khatoon H, Banerjee S, Yusoff F M, et al. Effects of Salinity on the Growth and Proximate Composition of Selected Tropical Marine Periphytic Diatoms and Cyanobacteria [J]. Aquat. Res., 2010, 41(9): 1348-1355.
  • 7Carried D, Momot D, Brasg I A, et al. Boosting Autofermentation Rates and Product Yields with Sodium Stress Cycling: Application to Production of Renewable Fuels by Cyanobacteria [J]. Appl. Environ. Microbiol., 2010, 76(19): 6455-6462.
  • 8Saowarath J, Mienpi P, Mulo P, et al. Content and Biosynthesis of Polyamines in Salt and Osmotically Stressed Cells of Synechocystis sp. PCC 6803 [J]. FEMS Microbiol. Lea., 2003, 228(1): 129-135.
  • 9Hagemann M, Marin K. Salt-induced Sucrose Accumulation is Mediated by Sucrose-phosphate-synthase in Cyanobacteria [J]. J. Plant Physiol., 1999, 155(3): 424-430.
  • 10Li Y, Gao K. Photosynthetic Physiology and Growth as a Function of Colony Size in the Cyanobacterium Nostoc sphaeroides [J]. Eur. J. Phycol., 2004, 39(1): 9-15.

二级参考文献18

  • 1余叔文.植物生理与分子生物学[M].北京:科学出版社,1999.421-512.
  • 2Zhu J K. Plant salt tolerance[J]. Trends in Plant Science, 2001,6(2):66-71.
  • 3Macler, B A. Salinity effects on photosynthesis, carbon allocation, and nitrogen assimilation in the red alga, Gelidium coulteri[J]. Plant Physiology, 1988.88(3):690-694.
  • 4Masojidek J, Torzillo,G, Kopecky J,et al. Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress[J]. J. Appl. Phycol. 2000, 12(3): 417-426.
  • 5Jacob A, Kirst, G O, Wiencke C. Physiological responses of the Antarctic green alga Prasiola crispa sp. antarctica to salinity stress[J].J. Plant Physiol., 1991, 1: 57-62.
  • 6Reed R H, Stewart W D P.The responses of cyanobacteria to salt stress. In:Rogers L J, Gallan J R,(eds), Biochemistry of the Algae and Cyanobacteria. Clarendon Press, 1988,217-231.
  • 7Gao K S,Qiu B S, Xia J R. et al. Light dependency of the photosynthetic recovery of Nostoc flagelliforme[J].J. Appl. Phycol. 1998,10:51-53.
  • 8Wiggins M P. Role of water in some biological process [J].Microbiol Rev., 1990, 54: 432-449.
  • 9Blumwald E, Tel-OE Osmoregulation and cell composition in salt-adaption of Nostoc muscorum[J]. Arch Microbiol., 1982,132:168-172.
  • 10Iyer V, Fernandes T A, Apte S K. A role for osmotic stress-induced proteins in the osmitolerance of a nitrogen-fixing cyanobacterium, Anabaena sp. Strain L-31 [J]. J.Bacteriol.1994,176(18): 5868-5870.

共引文献36

同被引文献30

  • 1孙志一,牛天贵.一株能够有效解酒的芽孢杆菌的分离筛选与初步鉴定[J].食品研究与开发,2006,27(7):77-79. 被引量:2
  • 2Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel [J]. Applied Energy, 2009, 86(11): 2273-2282.
  • 3Woods R P, Smith C R, Kramer D, et al. Genetically modified cyanobacteria for the production of ethanol [P]. United States Patent: 20100068776A1, 2010-03-18.
  • 4Dexter J, Fu P. Metabolic engineering of cyanobacteria for ethanol production [J]. Energy & Environmental Science, 2009, 2(8): 857-864.
  • 5Deng M D, Coleman J R. Ethanol synthesis by genetic engineering in cyanobacteria [J]. Applied and Environmental Microbiology, 1999, 65(2): 523-528.
  • 6Gao Z X, Zhao H, Li Z M, et al. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria [J]. Energy & Environmental Science, 2012, 5(12): 9857-9865.
  • 7Wei K, Cao X H, Li X, et al. Genome shuffling to improve fermentation properties of acetic acid bacterium by the improvement of ethanol tolerance [J]. International Journal of Food Science & Technology, 2012, 47(10): 2184-2189.
  • 8Kometani T, Morita Y, Kiyama Y, et al. Relationship between ethanol consumption rate and prochiral ketone reduction rate in bakers' yeast [J]. Journal of Fermentation and Bioengineering, 1995, 80(2): 208-210.
  • 9Xiao J B, Jiang H X, Chu S Y. Isolation and Characterization of Denitrifying Bacterium Pseudomonas Mendocina ariD7 with Anaerobic Ammonium Oxidization [A]. In: Sustainable Environment and Transportation. Applied Mechanics and Materials, May 2012, Stafa, Zurich [C]. Trans Tech Publications. 2012, 699-703.
  • 10Maleszka R, Schneider H. Concurrent production and consumption of ethanol by cultures of Pachysolen Tannophilus growing on D-xylose [J]. Applied and Environmental Microbiology, 1982, 44(4): 909-912.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部