期刊文献+

基于时态正负关联分类的电信产品要素组合评价 被引量:1

Evaluation of the Factors of Telecom Production based on Temporal Associative Classification with Positive and Negative Rules
下载PDF
导出
摘要 为研究电信产品要素组合对市场发展周期的影响,提出了一种新的基于时态正负关联分类的评价方法。通过建立产品生命周期评价指标体系,得到不同类型产品要素组合的电信产品生命周期区间分布;进而给出了各市场发展周期时态区间电信产品要素组合与产品生命周期正负关联分类方法完备的形式化描述,及相应的挖掘算法和步骤。实证研究表明:该评价方法充分挖掘了电信产品生命周期分布特征及产品要素组合对市场发展周期影响的时态关联分类信息,为通信企业开展正确的产品要素组合评价提供了一种有效的新途径。 To evaluate the impact of the factors of telecom production on market development periods, a novel approach is developed based on temporal associative classification with positive and negative rules.First, the lifecycle interval distribution of telecom production with various factors is performed by setting up an evaluation indicators for the production lifecycle. Then, a completely formal description of theapproach is presented based on associative classification with positive and negative rules between the factors and the production lifecycle during each temporal interval of market development periods. Thecorresponding algorithms and procedures are developed. The empirical results show that the evaluation methods enable fully mining of the production lifecycle distribution and the temporal associativeclassification information including the impact of the factors on market development periods, which provide telecom corporations with a valid access to evaluate the essential production factors correctly.
机构地区 中南大学商学院
出处 《系统管理学报》 CSSCI 2013年第1期31-38,共8页 Journal of Systems & Management
基金 国家自然科学基金委创新群体资助项目(70921001) 中国移动通信集团业务支撑重点联合研发项目(2011_LH_21)
关键词 电信产品生命周期评价 产品要素组合 市场发展周期 时态正负关联分类 the evaluation methods telecom production lifecycle production factors,market development period, temporal associative classification
  • 相关文献

参考文献15

二级参考文献60

共引文献23

同被引文献12

  • 1石洪波,黄厚宽.贝叶斯网络分类器稳定性研究[J].模式识别与人工智能,2004,17(3):275-280. 被引量:2
  • 2朱晓峰.生命周期方法论[J].科学学研究,2004,22(6):566-571. 被引量:77
  • 3潘定,沈钧毅.时态数据挖掘的相似性发现技术[J].软件学报,2007,18(2):246-258. 被引量:41
  • 4Vijay Srinivasan. An integration framework for product lifecycle management[J]. Computeraided design, 2008, 43(5): 464-478.
  • 5Yuan, Yanni, SOA-Based Telecom Product Management System Framework[J]. Research and Prac- tical Issues of Enterprise Information Systems, 2008(2): 1251-1260.
  • 6Michael G. Madden, On the classification performance of TAN and general Bayesian networks[J]. Knowledge-Based Systems, 2009(22): 489-495.
  • 7Pearce G, Jackson J. Experiencing the Product Life Cycle Management Highs and Lows Through Dramatic Simulation[J]. Journal of Marketing Education, 2009(12): 212-218.
  • 8Ozgur Baskan, Soner Haldenbilen. A new solution algorithm for improving performance of ant colony optimization[J]. Journal of Applied Mathematics and Computation, 2011, 211: 75-84.
  • 9Junzhong Ji, Renbing Hu. A hybrid method for learning Bayesian networks based on ant colony optimization[J]. Jqurnal of Applied Soft Computing, 2011(11): 3373-3384.
  • 10Edimilson B, Santosa Estevam R. Hruschka, Bayesian network classifiers: Beyond classification accuracy[J]. Intelligent Data Analysis, 2011(15): 279-298.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部