期刊文献+

度量空间粗嵌入进l_2的一个注记

On the Coarse Embeddability of l_p-Spaces Into l_2
原文传递
导出
摘要 对l(_p-)空间与l_2之间粗嵌入关系作进一步的研究,证明了度量空间X可粗嵌入进l_2当且仅当存在某个2<P_0<∞,使得X可一致地粗嵌入进{l_p,2<P≤p_0}.这给出度量空间粗嵌入进l_2的一个等价刻画. We made some further research on the coarse embeddability between lpspaces and l2 and we proved that a metric space X can be coarsely embedded into 12 if and only if there exists some P0 〉 0 such that X can be coarsely embedded into {lp, 2 〈 p≤ P0} uniformly. This gave an equivalent condition for the coarse embeddability of metric spaces into 12.
作者 罗正华 张文
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第2期217-222,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(11101340 11201160) 福建省自然科学基金(2010J05012 2012J05006) 华侨大学高层次人才科研启动项目(11BS223)
关键词 度量空间 粗嵌入 一致粗嵌入 metric spaces coarsely embedding coarsely embedding uniformly
  • 相关文献

参考文献11

  • 1Gromov M., Asymptotic Invariants for Infinite Groups, Cambridge University Press, Cambridge, 1993.
  • 2Roe J., Lecture on Coarse Geometry, American Mathematical Society, USA, 2003.
  • 3Skandalis G., Tu J. L., Yu G., Coarse Baum Connes conjecture and groupoids, Topology, 2002, 41: 807-834.
  • 4Yu G., The oarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., 2000, 139: 201-240.
  • 5Kasparov G., Yu G., The coarse geometric Novikov conjetcure and uniform convexity, Adv. Math., 2006, 206(1): 1 -56.
  • 6Nowark P., Coarse embeddings of metric spaces into Banach spaces, Proc. Amer. Math. Soc., 2005, 133: 2589-2596.
  • 7Nowark P., On coarse embeddability into /p-spaces and a conjecture of Dranishnikov, Fund. Math., 2006, 189(2): 111-116.
  • 8Johnson W. B., Randrianarivony L., lp (p > 2) does not coarsely embed into a Hilbert space, Proc. Amer. Math. Soc., 2006, 134(4): 1045-1050.
  • 9Ball K., Isometric embedding in/p-spaces, Europ. J. Combinatorics, 1990, 11: 305-311.
  • 10Dadarlat M., Guentner E., Constructions preserving Hilbert space uniform embeddability of discrete groups, Trans. Amer. Math. Soc., 2003, 355:3253-3275.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部