期刊文献+

多目标环境中的认知雷达跟踪方法 被引量:4

Cognitive Radar Tracking in the Multiple-Target Environment
下载PDF
导出
摘要 研究了多目标环境中的认知雷达目标跟踪问题,提出了一种基于波形优化和快速粒子滤波的多目标跟踪方法。在量测模型中,基于采样的接收数据建立量测方程,以克服多目标跟踪中的数据关联问题;在状态模型中,与量测模型相匹配,联合估计目标运动状态(位置、速度)和散射系数。为实现多目标跟踪和提高跟踪性能,从联合收发自适应处理角度出发设计跟踪算法和发射波形:1)接收自适应。由于量测数据的维数以及跟踪模型的非线性程度较高,为实现对多目标的有效跟踪以及降低跟踪算法的运算复杂度,采用改进的粒子滤波方法对目标状态进行实时估计;2)发射自适应。考虑到信噪比与跟踪性能关系以及量测模型的特点,基于最优信噪比准则实现了对发射波形的优化。仿真结果表明文中所提出的跟踪方法能够有效的跟踪上目标,且所设计的自适应波形的跟踪性能优于传统固定波形。 The problem of target tracking for cognitive radar in the multiple-target environment is studied, and a tracking method for tracking multiple targets is proposed based on waveform optimization and quick particle filter. In the measurement model, the measurement equation is modeled by the sampled received data to avoid the problem of data association. In the state model, the positions, velocities and the scattering coefficients of multiple targets are estimated jointly to match the measurement model. Consider cognitive radar which can transmit and receive signals adaptively: 1 ) receive signals adaptively. In order to decrease the computing complexity caused by the high dimension of measurement data, the modified particle filter is used to track the multiple targets; 2) transmit signals adaptively. Based on the positive relation between signalto-noise rate (SNR) and tracking performance, the transmitted waveform is optimized based on SNR criterion. Simulation results show that the multiple targets can be precisely tracked by the proposed method, and the tracking performance of adaptive waveform is better than that of traditional fixed waveform.
作者 崔琛 张鑫
机构地区 电子工程学院
出处 《信号处理》 CSCD 北大核心 2013年第1期107-114,共8页 Journal of Signal Processing
关键词 认知雷达 多目标跟踪 波形优化 粒子滤波 Cognitive Radar Multi-Target Tracking Waveform Optimization Particle Filter
  • 相关文献

参考文献14

  • 1Haykin S.. Cognitive radar: A way of the future [ J ]. IEEE Signal Processing Magazine, 2006, 23 (1) : 30-40.
  • 2Tonissen S. M. , Bar-Shalom Y.. Maximum likelihood track-before-detect with fluctuating target amplitude [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 796-808.
  • 3Bnzzi S. , Lops M. , Venturino L.. Track-Before-Detect procedures for early detection of moving target from airborne radars [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 937-954.
  • 4Buzzi S., Lops M. , Venturino L., et. al.. Track-Before-Detect procedures in a multi-target environment [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3) : 1155-1150.
  • 5Bell M. R.. Information theory and radar waveform design [J]. IEEE Transactions on Information Theory, 1993, 39(5) : 1578-1597.
  • 6Hurtado M. , Zhao T. , Nehorai A.. Adaptive polarized waveform design for target tracking based on sequential Bayesian inference [ J ]. IEEE Transactions on Signal Processing, 2008, 56 ( 3 ) : 1120-1133.
  • 7Sen S. , Nehorai A.. OFDM MIMO radar with mutual-information waveform design for low-grazing angle track- ing [J]. IEEE Transactions on Signal Processing, 2010, 58(6) : 3152-3162.
  • 8Kershaw D. J. , Evans R. J.. Optimal waveform selection for tracking systems [ J ]. IEEE Transactions on Information Theory, 1994, 40(5) : 1536-1550.
  • 9Sen S. , Nehorai A.. Adaptive OFDM radar for target detection in multipath scenarios [J]. IEEE Transactions on Signal Processing, 2011, 59(1): 78-90.
  • 10Chavali P. , Nehorai A.. Scheduling and power allocation in a cognitive radar network for multiple-target tracking [ J ]. IEEE Transactions on Signal Processing, 2012, 60(2) : 715-729.

二级参考文献31

  • 1Y. Bar-Shalom, T. E. Fortmann. Tracking and Data As-sociation [ M ]. Boston: Academic Press, 1988.
  • 2B.-T. Vo, B.-N. Vo, A. Cantoni. Analytic Implementa- tions of the Cardinalized Probability Hypothesis Density Filter [ J ]. IEEE Transactions on Signal Processing, 2007, 55(7) :3553-3567.
  • 3R. Mahler. Global integrated data fusion[ J ]. In Proceed- ings of the 7th National Symposium on Sensor Fusion,vol. 1 (unclassified) , Sandia National Laboratories, Al- buquerque, NM, 1994, 187-199.
  • 4R. Mahler. An Introduction to Multisource-Multitarget Sta- tistics and Its Applications[ J]. Lockheed Martin Technical Monograph, 2000.
  • 5I. R. Goodman, R. Mahler, H. Nguyen. Mathematics of Data Fusion[ M]. Boston: Kluwer Academic Publishers, 1997.
  • 6R. Mahler. Statistical Muhisource Muhitarget Information Fusion[ M]. Norwood MA: Artech House, 2007.
  • 7B.-N. Vo, S. Singh, A. Doucet. Sequential Monte Carlo methods for multi-target fihering with random finite sets [ J]. IEEE Transactions on Aerospace and Electronic Sys- tems, 2005, 41 (4) :1224-1245.
  • 8B.-N. Vo, W. K. Ma. The Gaussian Mixture Probability Hypothesis Density Filter[J]. IEEE Transactions on Sig- nal Processing, 2006, 54( 11 ) :4091-4104.
  • 9D. Clark, B. -N. Vo. Convergence Analysis of the Gauss- ian Mixture PI-ID filter [ J ]. IEEE Transactions on Signal Processing, 2007, 55(4) :1204-1211.
  • 10T. Zajie, R. Mahler. A particle-systems implementation of the PHD multi-target tracking fiher[ C ]. Proceedings of SPIE, Signal Processing, Sensor Fusion and Target Rec- ognition, Vol. 5096, 2003. 291-299.

共引文献6

同被引文献42

  • 1周小钧,高利,赵亚男.一种复杂交通环境下的毫米波雷达目标跟踪方法[J].公路交通科技(应用技术版),2019,0(10):332-338. 被引量:6
  • 2程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 3方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 4黄培康.遥感目标的特征提取与反演[R].长沙:国防科技大学,2011.
  • 5S Haykin. Cognitive radar : a way of the future [ J ]. IEEE Signal Processing Magazine,2006,23 ( 1 ) : 30 - 40.
  • 6S Haykin. Cognition is the key to the next generation of radar sys- tems[ C]. Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, IEEE. 2009:463 - 467.
  • 7S Haykin, Amin Zia, I Arasaratnam, Xue Yanbo. Cognitive tracking radar[ C]. Radar Conference, IEEE. 2010:1467 - 1470.
  • 8E J Lefferts, F L Markley, M D Shuster. Kalman filtering for space- craft attitude estimation[J]. Journal of Guidance,Control,and Dy- namics, 1982,5 (5) :417 - 429.
  • 9J F G Freitas, M Niranjan, A H Gee, A Doucet. Sequential Monte Carlo Methods to Train Neural Network Models [ J 1. Neural Com- putation,2000,12 (4) :955 - 993.
  • 10R E Kalman. A New Approach to Linear Filtering and Prediction Problems[J]. Transaction of the ASME -Journal of Basic Engi- neering, 1960,82(D) :35 - 45.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部