摘要
利用与广义Kato分解有关的谱,研究单值延拓性质在紧摄动下的稳定性.此外,研究2×2上三角算子矩阵的单值延拓性质在紧摄动下的稳定性.
A Hilbert space operator T has the single-valued extension property if the only analytic function f which satisfies ( T- AI)f(A ) = 0 is f=-- 0. Obviously the point spectrum of any operator which has empty interior must have the single-valued extension property. Using the spectrum derived from " generalized Kato decomposition ", we investigate stability of the single-valued extension property under compact perturbations. Also, we characterize the 2 × 2 upper triangular operator matrix for which the single-valued extension property is stable under compact perturbations.
出处
《中国科学院研究生院学报》
CAS
CSCD
北大核心
2013年第2期159-165,共7页
Journal of the Graduate School of the Chinese Academy of Sciences
基金
陕西师范大学中央高校基本科研业务费专项资金(GK200901015)资助
关键词
单值延拓性质
紧摄动
广义Kato分解
single-valued extension property
compact perturbation
generalized Katodecomposition