期刊文献+

广义Kato分解及单值延拓性质的摄动 被引量:1

Generalized Kato decomposition and perturbations of the single-valued extension property
下载PDF
导出
摘要 利用与广义Kato分解有关的谱,研究单值延拓性质在紧摄动下的稳定性.此外,研究2×2上三角算子矩阵的单值延拓性质在紧摄动下的稳定性. A Hilbert space operator T has the single-valued extension property if the only analytic function f which satisfies ( T- AI)f(A ) = 0 is f=-- 0. Obviously the point spectrum of any operator which has empty interior must have the single-valued extension property. Using the spectrum derived from " generalized Kato decomposition ", we investigate stability of the single-valued extension property under compact perturbations. Also, we characterize the 2 × 2 upper triangular operator matrix for which the single-valued extension property is stable under compact perturbations.
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2013年第2期159-165,共7页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 陕西师范大学中央高校基本科研业务费专项资金(GK200901015)资助
关键词 单值延拓性质 紧摄动 广义Kato分解 single-valued extension property compact perturbation generalized Katodecomposition
  • 相关文献

参考文献12

  • 1Aiena P. Fredholm and local spectral theory, with applications to multipliers[ M ]. Dordrecht: Kluwer Academic Publishers, 2004.
  • 2Lausen K B, Neumann M M. An introduction to local spectral theory[ M ]. New York : Clarendon Press, 2000.
  • 3Finch J K. The single valued extension property on a Banach space[J]. Pacific J Math, 1975, 58: 61-69.
  • 4Harte R E. Invertibility and singularity for bounded linear operators[M]. New York: Dekker, 1988.
  • 5Harte R E. Fredholm, Weyl and Browder theory [J]. Proc Royal Irish Acad, 1985, 85A(2) : 151-176.
  • 6江泽坚.实变函数论[M]3版.北京:高等教育出版社,2007.
  • 7Herrero D A, Taylor T J, Wang Z Y. Variation of the point spectrum under compact perturbations [J]. Operator Theory Advances and Applications, 1988(32) : 113-158.
  • 8Ji Y Q. Quasitriangular + small compact = strongly irreducible [J]. Trans Amer Math Soc, 1999, 351(11): 4657-4673.
  • 9Herrero D A. Economical compact perturbations, II, Filling in the holes[J]. J Operator Theory, 1988, 19(1) : 25-42.
  • 10Taylor A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Math Ann, 1966, 163 : 18-49.

共引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部