期刊文献+

民航空管威胁、差错与意外状态相关性的贝叶斯网络方法研究 被引量:8

On the correlation among threats,errors,and undesired states in air traffic control based on a Bayesian network model
下载PDF
导出
摘要 提出了一种基于贝叶斯网络模型研究民航空管单位运行中威胁、差错和意外状态相关性的方法。该模型中,将威胁、差错中发生频率最高,且直接导致意外状态发生的6种类型信息作为研究对象,即内部程序威胁、相邻单位威胁、空中交通威胁、设备处理差错、程序差错和通讯差错,并以此为基础构建贝叶斯网络。探讨了空中意外状态与各类威胁及差错的关系,提供了基于威胁及差错发生的先验概率,获得意外状态与各类威胁及差错间关系的后验概率的计算方法。应用贝叶斯网络方法研究了威胁、差错以及意外状态各类安全信息的相关性,结果表明:1)基于意外状态后验概率得到的威胁和差错等致因因素严重度排序与基于先验概率得到的排序明显不同,说明后验概率应作为判定威胁和差错影响意外状态程度的主要指标;2)空中意外状态发生时,内部程序威胁与空中意外状态的发生相关性为77%,属最为敏感的致因因素;同时空中威胁的后验概率也达到72%,属高相关性致因因素,应在运行管理中重点管控。 This paper is aimed to introduce a Bayesian network model developed by the author to investigate the correlation among the threats, errors, and undesired states in the air traffic control. In this model, we have taken the Bayesian Network (BN) as the theoretical foundation for analyzing the quantitative method on the database of Threat and Error Management (TEM). For our research purpose, we have adopted six types of safety states most frequently to be dealt with (that is, the interior procedure threat, the adjacent units threat, the air traffic threat, equipment operating error, procedure error, and communication error) to establish our BN network model. While dis- cussing the relations among the undesired states ~in the air and allthreats and errors concerned, we have established a risk assessment model with reference to the Bayesian Network. All this has enabled the given model we have developed to provide the predictive probabil- ity in advance as for the incoming threats and errors so as to find nee- essary means to work out the corresponding subsequent measures to deal with the undesired states and all other threats and errors. Thus, we have thoroughly founded our research results on a database of TEM and the proper application of Bayesian network. Thus, the above re- search results of ours make us draw the following conclusions: (1) There actually exist significant gaps among the results based on the study of the resultant probability and the anticipating probability. While the resultant probability mainly indicates the probability of threats and errors likely to come about under the premise of accident status, it allows the flight control workers to use al/the information of forecasting as the main indicators to determine the likely events due to the threat and error factors under control. (2) If any undesired states in the air occur, the posterior probability of the interior progress threats can be made as high as to 77 %, which can be thought of as the most effective factor in operation. Meanwhile, the posterior prob- ability of the air threats can also be as high as to reach 72 %, which means it is also a major influential factor to the incidence of undesired states. However, the interior progress threats and air threats should be emphatically controlled in the civil aviation operation.
出处 《安全与环境学报》 CAS CSCD 北大核心 2013年第1期188-191,共4页 Journal of Safety and Environment
基金 国家自然科学基金项目(60979006)
关键词 安全管理工程 人为差错 威胁与差错管理 贝叶斯网络 相关性 safety management engineering human error TEM Bayesian network correlation
  • 相关文献

参考文献10

  • 1International Civil Aviation Organization. Line operations safety audit, DOC 9803-AN/761 . Montreal: ICAO, 2002.
  • 2International Civil Aviation Organization. Threat and error management in air traffic control, circular 314-AN/178[M]. Montreal: ICAO, 2008.
  • 3MCFADDEN K L, TOWELL E R. Aviation human factors: a framework for the new millennium[J]. Journal of Air Transport Management, 1999, 5(4): 177 184.
  • 4DODD B. Safety data integration can lead to better understanding of risk[J]. International Civil Aviation Organization Journal, 2007, 62(2): 21 22.
  • 5ANTHONY M P, DOUGLAS A W, SCOTT S. Air traffic control related accidents and incidents: a human factors analysis //Proc of the 11th International Symposium on Aviation Psychology. Columbus: The Ohio State University, 2001: 1 4.
  • 6LUXHΦJ J T, COIT D W. Modeling low probability/high consequence events: an aviation safety risk model //Proc of Reliability and Maintainability Symposium 2006 Annual. New Jersey: Wiley-IEEE Press, 2006: 215-221.
  • 7LUXHΦJ J T. Risk Analysis of Human performance in aviation maintenance //Proc of the 16th Human Factors in Aviation Maintenance Symposium. San Francisco: FAA, 2002: 1-9.
  • 8JANIC M. An assessment of risk and safety in civil aviation[J]. Journal of Air Transport Management, 2000, 6(1): 43-50.
  • 9PEARL J. Probabilistic reasoning in intelligence systems: networks of plausible inference[M]. San Francisco: Morgan Kaufmann Press, 1988.
  • 10曹海峰,李彤.空管威胁、差错与意外状态的贝叶斯模型分析研究[J].中国安全科学学报,2011,21(8):85-89. 被引量:13

二级参考文献10

  • 1European Air Traffic Management Programme. The Human Error in ATM Technique, HERA-JANUS[R]. Geneva: Euro- pean Organization for the Safety of Air Navigation, 2003.
  • 2International Civil Aviation Organization. Threat and Error Management in Air Traffic Control, C314-AN/178[R]. Mont- real: International Civil Aviation Organization, 2008.
  • 3International Civil Aviation Organization. Line Operations Safety Audit, D9803-AN/761 [R]. Montreal: International Civil Aviation Organization, 2002.
  • 4Ashleigh Merritt, James Klinect. Defensive Flying for Pilots: An Introduction to Threat and Error Management L R J. Austin: The University of Texas Human Factors Research Project, The LOSA Collaborative, 2006.
  • 5Dodd B. Safety data integration can lead to better understanding of risk[J].International Civil Aviation Organization Jour- nal, 2007, 62(2):21 -22.
  • 6Anthony M P, Douglas A W, Scott S. Air traffic control related accidents and incidents: a human factors analysis[A]. The 11^th International Symposium on Aviation Psychology[C]. Columbus, OH,2001:1 -4.
  • 7James T. Luxh~j, David W. Modeling low probability/high consequence events: An aviation safety risk model[A]. Reli- ability and Maintainability Symposium, RAMS 06 Annual Conference[C] . Newport Beach, CA,2006:215 -221.
  • 8James T. LuxhФj. Risk Analysis of Human performance in aviation maintenance[.A]. 16^th Human Factors in Aviation Maintenance Symposium[ C]. San Francisco, CA,2002 : 1 - 9.
  • 9Milan Janic. An assessment of risk and safety in civil aviation[J]. Journal of Air Transport Management, 2000, 6(1) : 43 - 50.
  • 10吕人力,曹海峰,周艳,白福利.民航3类安全信息的TEM分布特征比较研究[J].安全与环境学报,2010,10(3):170-174. 被引量:4

共引文献12

同被引文献55

  • 1罗帆,陈小佳,顾必冲.基于贝叶斯网络的航空灾害成因机理探析[J].北京航空航天大学学报,2005,31(8):934-938. 被引量:11
  • 2丁松滨,石荣,施和平.证据理论在空中交通管理安全评价中的应用[J].中国民航学院学报,2006,24(6):38-41. 被引量:14
  • 3谢红卫,孙志强,李欣欣,李政仪,张明,史秀建,李龙.典型人因可靠性分析方法评述[J].国防科技大学学报,2007,29(2):101-107. 被引量:52
  • 4金迪.航空公司运行不安全事件安全风险管理方法研究[D].上海:上海交通大学工业工程学院,2013.
  • 5P. E. Labeau, C. Smidts, S. Swaminathan. Dynamic reliability: towards an integrated platform for probabilistic risk assessment [ J ]. Reliability Engineering & System Safety , 2010 ,68 (3) :219-254.
  • 6袁崇义.Petri网原理与应用[M].第三版.北京:电子工业出版社,2012:63—70.
  • 7Xu H, Dugan J B. Combining Dynamic Fauh Trees and Event Trees for Probabilistic Risk Assessment[ A]. Annu- M Reliability and Maintainability Symposium [ C ]. Los Angeles ,2010.
  • 8中国民航航空网.飞行事故公布[J/OL].2013.
  • 9D. Zhang , X. P. Yan, Z. L. Yang , A. Wall. Incorpo- ration of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River[ J]. Reliability Engineering and System Safety. 118 (2013) : 93-105.
  • 10Sou-Sen Leu, Ching-Miao Chang. Bayesian-network- based safety risk assessment for steel construction pro- jects [J ]. Accident Analysis and Prevention 54 (2013) 122- 133.

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部