期刊文献+

基于模型辨识的滚动轴承故障诊断 被引量:7

Rolling Element Bearings Fault Diagnosis Based on Physical Model Identification
下载PDF
导出
摘要 为了解决小样本环境和早期故障预示问题,研究一种基于物理模型辨识的滚动轴承故障诊断方法,即通过物理模型构建标准模式数据库,进而识别故障。考虑到振动传递路径结合界面动态接触机制,建立了轴承表面缺陷的物理模型,通过仿真获得不同损伤位置的振动信号,求得特征矩阵。由于实际测试信号故障特征比较微弱,提出一种盲反卷积和峭度最优Laplace小波相结合的算法,该算法被用于仿真信号与实际工程中微弱冲击信号的检测中,有效突出了冲击成分。最后,以实测信号特征值作为输入,利用距离函数求出与输入值最近的样本点,进而预测出故障位置。案例分析表明,该方法具有较好的可行性与可靠性。 In order to solve the problem of small-samples and incipient fault prognosis,a novel identification approach based on physical model is presented for automatic diagnosis of defective rolling element bearings.The major advantage of this method is that its training can be performed using simulation data.Prediction of the vibration response due to defect requires an accurate model.Multibody dynamics of rolling element bearing are developed according to the vibration transmission path combining with dynamics contact mechanism of interface.For the purpose of extracting the feature of weak impact component,a new detecting method based on Blind deconvolution and Kurtosis-Laplace wavelet is proposed.The simulation and the detection of engineering faint impact signal results demonstrate that this method is highly effective in noise reduction and fault feature extraction.Then,through translating the inverse problem into geometric distance matching,the defects can be predicted.Finally,experimental data is used to verify the feasibility and reliability of current method.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2013年第1期12-17,161-162,共6页 Journal of Vibration,Measurement & Diagnosis
基金 国家重点基础研究发展计划("九七三"计划)资助项目(2011CB706606) 国家自然科学基金资助项目(51035007) 国家科技重大专项资助项目(2010ZX04001-021)
关键词 滚动轴承 故障诊断 模型辨识 盲反卷积 峭度最优Laplace小波 rolling element bearings,fault diagnosis,model identification,blind deconvolution,Kurtosis-Laplace wavelet
  • 相关文献

参考文献14

  • 1Randall R B,Antoni J. Rolling element bearing diag- nosties-a tutorial [J].Mechanical Systems and Sig- nal Processing, 2011, 25(2) :485-520.
  • 2Randall R B. Simulating gear and bearing interactions in the presence of faults: part I. the combined gear bearing dynamic model and the simulation of localised bearing faults [J]. Mechanical Systems and Signal Processing, 2008, 22(8):1924-1951.
  • 3Ankur A, Farshid S, Lars-Erik S. A new approach to modeling surface defects in bearing dynamics simula- tions [J]. ASME, Journal of Tribology, 2008, 130 (4):1-8.
  • 4Ahmad R, Anoushiravan S A. Nonlinear dynamic modeling of surface defects in rolling element bearing systems[J]. Journal of Sound and Vibration, 2009, 319(3-5) : 1150-1174.
  • 5Mohsen N, Bryant M D. Dynamic modeling of rolling element bearings with surface contact defects using bond graphs [J]. ASME, Journal of Tribology, 2011, 133(1):1-12.
  • 6Harris T A. Rolling bearing analysis [M]. 4th ed. New York.. John Wiley and Sons, 2001 : 233-237.
  • 7Tiwari M, Gupta K,Prakash O. Dynamic response of an unbalanced rotor supported on ball bearings [J]. Journal of Sound and Vibration, 2000, 238(5): 757- 779.
  • 8Kramer E. Dynamic of rotors and foundations [M]. Berlin: Springer, 1993:138-140.
  • 9谢明祥,杨富春,周晓军,魏燕定.k阶循环矩解调用于滚动轴承故障特征提取[J].振动.测试与诊断,2011,31(2):139-143. 被引量:2
  • 10Jelonnek B, Boss D, Kammeyer K D. Generalized eigenvector algorithm for blind equalization [J]. Signal Processing, 1997, 61(3): 237-264.

二级参考文献29

共引文献50

同被引文献58

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部