期刊文献+

航空发动机转静径向碰摩位置智能识别技术研究 被引量:3

Intelligent recognition for radial rubbing location of an aero-engine rotor-stator
下载PDF
导出
摘要 获取航空发动机转静碰摩位置对于诊断发动机碰摩故障和改进设计具有重要意义,基于航空发动机转子实验器的机匣振动加速度信号,研究基于拉普拉斯特征映射(Laplacian Eigenmaps,LE)结合球结构支持向量机的径向碰摩位置智能识别方法。采用拉普拉斯特征映射算法提取碰摩样本的特征信息,用网格搜索法优化拉普拉斯特征映射算法的相关参数;将特征样本输入到球结构支持向量机分类器,识别不同位置的碰摩样本;利用实测的碰摩数据对该方法进行验证,并与主成分分析法(PCA)所得特征样本分类结果进行比较,结果表明,该方法具有实用性和有效性。 : In order to diagnose rubbing faults and improve design, it is very important to acquire the radial rubbing location of an aero-engine rotor-stator. Based on the casing vibration acceleration signals of an aero-engine rotor experimental rig, a method for the radial rubbing location identification using Laplacian eigenmaps (LE) and sphere support vector machine was investigated here. Firstly, Laplacian eigenmaps were used to extract the rubbing samples' features, their parameters were optimized with grid search method. Then, the characteristics of the samples were input to a sphere support vector machine to identify different locations of rubbing samples. Besides, with the actual rubbing data, the method was verified and compared with the corresponding results using the principal component analysis (PCA). The results showed the practicability and effectiveness of the method.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第3期141-145,共5页 Journal of Vibration and Shock
基金 国家安全重大基础研究项目(613139) 国家自然科学基金资助项目(61179057)
关键词 航空发动机 转静碰摩 拉普拉斯特征映射 球结构支持向量机 网格搜索法 aero-engine rotor-stator rubbing Laplacian Eigen-maps sphere support vector machine grid search
  • 相关文献

参考文献15

  • 1Wang Q, Chu F. Experimental determination of the rubbing location by means of acoustic emission and wavelet transform [J]. Journal of Sound and Vibration,2001,248 ( 1 ) :91 - 103.
  • 2卢文秀,褚福磊,郭丹.基于遗传算法的碰摩位置辨识[J].清华大学学报(自然科学版),2005,45(2):208-211. 被引量:9
  • 3Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering [ G ]. Advances in NIPS 14. Cambridge, MA: MIT Press, 2001 : 585 -591.
  • 4Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [ J ]. Neural Computation ( S0899 - 7667), 2003,15 (6) : 1373 - 1396.
  • 5蒋全胜,贾民平,胡建中,许飞云.基于拉普拉斯特征映射的故障模式识别方法[J].系统仿真学报,2008,20(20):5710-5713. 被引量:34
  • 6Krebel U H G. Pairwise classification and support vector machines [ M ]. USA: Advances in Kernel Methods. MIT Press, 1999 : 255 - 268.
  • 7Bottou L, Comes C, Denker J, et al. Comparison of classifier methods : a case study in handwritten digitrecognition [ C ].// Proceedingsofthe 12 thIAPR International Conference. Jerusalem,Israel: [s. n. ],1994:77-82.
  • 8Guo G, Li S, Chan K. Face recognition by support vector machines [ C ]. Proceedings of the International Conferences on Automatic Face and Future Recognition,2000:196- 201.
  • 9Friedhelm S, Gunther P. Tree-structured support vector machines for multi-class pattern recognition [ C ].//Proceedings of the 2th International Workshop on Multiple Classifier System, London, UK: Spring-Ver-lag, 2001 :409 -417.
  • 10Bredensteinerl E J, Bennett K P. Multicategory classification by support vector machine [ J ]. Computational Optimization and Applications, 1999,12 ( 1 - 3 ) : 53 - 79.

二级参考文献42

共引文献112

同被引文献18

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部