期刊文献+

基于可行方向序列无约束极小化技术外点法的改进协同优化策略 被引量:2

Enhanced Collaborative Optimization Strategy Based on Feasible Direction SUMT Exterior Method
下载PDF
导出
摘要 指出准协同优化策略(Collaborative optimization,CO)存在的数值缺陷及其原因。针对系统级优化不满足Kuhn-Tucker条件所导致的计算困难,提出一种基于可行方向序列无约束极小化技术(Feasible direction sequential unconstrainedminimization technology,FD-SUMT)外点法的改进协同优化策略(Enhanced collaborative optimization with FD-SUMT method,ECO-FSM)。在系统级优化中使用FD-SUMT外点法,该方法不依赖Lagrange乘子并且能够将系统级设计变量限定在设计变量可行域内,避免传统SUMT外点法设计变量越界所导致的异常。利用学科间动态不一致信息更新系统级优化中的罚因子以加速学科间的协调。利用测试问题检验ECO-FSM的性能,并与其他的CO进行比较研究。研究结果表明ECO-FSM消除了系统级优化中设计变量越界的现象,收敛性、数值稳定性以及收敛速度得以显著提高。将ECO-FSM用于亚声速喷气式客机总体方案优化设计,优化结果表明ECO-FSM具有工程实用性。 The numerical drawbacks of standard collaborative optimization strategy (CO) and their reasons are pointed out. As to resolve the computationally difficulty caused by breaking Kutm-Tucker condition in system level optimization, an enhanced collaborative optimization strategy with feasible direction sequential unconstrained minimization technology (FD-SUMT) exterior method (ECO-FSM) is proposed. FD-SUMT exterior method independent of Lagrange multiplier is employed in system level optimization, which restricts the system level design variables in their feasible region and eliminates the singularity phenomenon resulted from the boundaries violation of design variables in traditional SUMT exterior method. The penalty factor is updated in terms of the dynamical inconsistence information among different disciplines to accelerate the inter-disciplinary coordination. Several test problems are used to validate the performance of ECO-FSM, moreover, comparative study with other enhance CO is also carried out. Study results reveal that boundaries violation of design variables in system level optimization is eliminatedisFD-SUMTirection during ECO-FSM optimization process, and convergence performance, numerical robustness and convergence speed are evidently upgraded as well. Eventually, ECO-FSM is verified to be practical for engineering problems through a conceptual optimization design of subsonic jet transport using ECO-FSM.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第3期153-162,共10页 Journal of Mechanical Engineering
基金 国家自然科学基金(51105040) 航空科学基金(2011ZA72003) 北京理工大学优秀青年教师资助计划(2011CX0402) 教育部重点实验室基金资助项目
关键词 协同优化策略 可行方向SUMT外点法 多学科设计优化 Collaborative optimization strategy Feasible direction SUMT exterior method Multidisciplinary design optimization
  • 相关文献

参考文献20

  • 1SOBIESZCZANSKI-SOBIESK/ J, HAFTKA R T. Multidisciplinary aerospace design optimization: Survey of recent development [C]// 34th Aerospace Sciences Meeting and Exhibit, Jan. 15-18, 1995, Reno, Nevada, 1995: 1-34.
  • 2GIESING J P, BARTHELEMY J O M. A sunanaary of industry MDO applications and needs[C]//7th AIAA/USAF/ NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Sep. 2-4, 1998, St, Louis, MO, 1998: 1-20.
  • 3WECK O D, AGTE J, SOBIESZCZANSKI-SOBIESKI J, et al. State-of-the-art and future trends in multidisciplinary design optimization[C]// 48th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dyrmmics, and Materials Conference, Apr. 23-26, 2007, Honolulu, Hawaii, 2007: 1-21.
  • 4BRAUN R, GAGE P, KROO I, et al. Implementation and performance issues in collaborative optimization[C]//6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Sep. 4-6, 1996, Bellevue, WA, 1996: 1-12.
  • 5ALEXANDROV N M, LEWIS R M. Analytical and computational aspects of collaborative optimization for multidisciplinary design [J]. AIAA Journal, 2002, 40(2): 301-309.
  • 6DEMIGUEL A, MURRAY W. An analysis of collaborative optimization methods[C]//8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Sep. 6-8,2000, LongBeach, CA, 2000: 1-13.
  • 7LIN J G, Analysis and enhancement of collaborative optimization for multidisciplinary design [J]. AIAA Journal, 2004, 42(2). 348-360.
  • 8TOSSERAMS S, ETMAN L F P, ROODA J E, A classification of methods for distributed system optimization based on formulation structure[J]. Struct. Multidisc. Optim., 2009, 39(5): 503-518.
  • 9ORR S A, HAJELA P. Genetic algorithm based collaborative optimization of a tiltrotor configuration[C]// 46th AIAA/ASME/ASCE/AHS/ASC Structures , Structural Dynamics & Materials Conference, Apr. 18-21, 2005, Austin, Texas, 2005: 1-12.
  • 10AUTE V, AZARM S. A genetic algorithms based approach for multidisciplinary multiobjective coUaborative optimization [C]// llth AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Sep. 6-8, 2006, Portsmouth, Virginia, 2006: 1-17.

二级参考文献63

  • 1韩明红,邓家禔.复杂工程系统多学科设计优化集成环境研究[J].机械工程学报,2004,40(9):100-105. 被引量:30
  • 2高圣国,姚奕荣.一个修正的罚函数方法[J].应用数学与计算数学学报,2004,18(2):79-84. 被引量:3
  • 3黄国平,梁德旺.一种快速的有约束气动CFD优化方法[J].南京航空航天大学学报,2005,37(2):150-154. 被引量:2
  • 4韩明红,邓家禔.协同优化算法的改进[J].机械工程学报,2006,42(11):34-38. 被引量:34
  • 5郦仕云,宁汝新,徐劲祥,姜晓春.气动和结构多学科优化设计过程集成技术研究[J].系统仿真学报,2007,19(4):852-855. 被引量:9
  • 6Braun R D, Kroo I. Use of the Collaborative Optimization Architecture for Launch Vehicle Design [R]//NASA-96-4018, 1996. USA: NABA, 1996.
  • 7Stanley A O, Prabhat H. Genetic Algorithm Based Collaborative Optimization of a TiRrotor Configuration [C]// 6th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2005. USA: AIAA, 2005: 5982-5993.
  • 8Parviz M Z, Vassili V T, Alastair S W. Use of Global Approximation in the Collaborative Optimization [C]// 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004. USA: AIAA, 2004: 3934-3944.
  • 9Herskovits J, Mappa P, Goulart E, et al. Mathematical Programming Models and Algorithms for Engineering Design Optimization [J]. Computer Methods in Applied Mechanics and Engineering (S0045-7825), 2005, 194(30-33): 3244-3268.
  • 10Sobieski L P, Kroo L. Collaborative Optimization Using Response Surface Estimation [R]//AIAA-98-0915, 1998. USA: AIAA, 1998.

共引文献85

同被引文献18

  • 1左孔天,陈立平,钟毅芳,王书亭,张云清.基于人工材料密度的新型拓扑优化理论和算法研究[J].机械工程学报,2004,40(12):31-37. 被引量:63
  • 2杨佩,高阳,陈兆乾.一种劝说式多Agent多议题协商方法[J].计算机研究与发展,2006,43(7):1149-1154. 被引量:21
  • 3裴晓强,黄海.协同优化在卫星多学科设计优化中的初步应用[J].宇航学报,2006,27(5):1054-1058. 被引量:13
  • 4MSC. Design Sensitivity and Optimization. 2010.
  • 5Habibi A. New approximation method for structural optimization [ J ] . Journal of Computing in Civil Engineering, 2012 ( 2 ) : 236-247.
  • 6Hansen L, Horst P. Multilevel optimization in aircraft structural design evaluation [ J ] . Computers and Stnlctures, 2008, 86 : 104-118.
  • 7夏利娟,金咸定.MSC/NASTRAN的结构优化设汁方法与应用[C].MSC用户论文集,2001.
  • 8Stavroulaki M, Stavroulakis G, Leftheris B. Modelling prestress restoration of buildings by general purpose structural analysis and optimization software the optimization module of MSC/NASTRAN [ J ] . Computers and Structures, 1997 ( 1 ) : 81-92.
  • 9Holzleitner L, Mahmoud K. Structural shape optimization using MSC/NASTRAN and sequential quadratic programming[J] . Computers and Structures, 1999, 70 : 487-514.
  • 10Wachter A, Biegler L. On the implementation of a primal- dual interior point filter line search algorithm for large-scale nonlinear programming [J]. Mathematical Programming, 2006 ( 1 ) : 25-57.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部