期刊文献+

高水头水泵水轮机转轮的抗振防裂纹设计 被引量:13

Anti-vibration and Crack Control Design of High-head Pump-turbine Runner
下载PDF
导出
摘要 流体激发转轮振动是目前高水头水泵水轮机稳定运行的关键问题之一。转轮的振动问题主要是由于活动导叶和转轮叶片之间形成的无叶区内不稳定流体相互作用所引发的水力激振在转轮上的力学响应。通过对叶栅干扰的产生机理分析,揭示了这种水力激振力的频率和振型决定于不同活动导叶数和转轮叶片数形成的叶栅组合方式,当转轮在水下的固有频率以及与之相对应的同相振型或反相振型同水力激振力发生耦合时,将会诱发转轮共振,并造成疲劳破坏。结果表明,选择最佳的叶栅组合可以最大限度地降低转轮发生共振的可能性,采用有限元法开展转轮结构的水下振动特性分析和控制局部高应力水平,以及保证良好的制造质量,可以有效提高转轮的抗振防裂纹能力。 Runner vibration excited by fluid is one of the key issues in the stable operation of high-head pump-turbine. Runner vibration is the mechanical response of hydraulic excitation induced by interaction of unstable fluid in vaneless gap between wicket gates and runner blades. It is concluded that the frequency of hydraulic exciting force and vibration mode depend on the relationship of numbers of wicket gates and runner blades. When the natural frequency of runner in water and the corresponding cophase and antiphase vibration mode are coupled with hydraulic exciting force, the runner resonance will be occurred which could cause fatigue failure. Results show that choosing the optimal relationship of numbers of wicket gates and runner blades could awfully reduce the possibility of runner resonance. By using finite element method, vibration characteristics of runner in water are analyzed and the local high stress level is managed. Then, the high manufacturing quality is ensured and anti-vibration and crack control ability of runner is improved.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第4期140-147,共8页 Journal of Mechanical Engineering
基金 国家重点基础研究发展计划(973计划 2010CB736208) 国家科技支撑计划(2012BAF12B16-1)资助项目
关键词 水泵水轮机 转轮 水力激振 叶栅干扰 共振 Pump-turbine Runner Hydraulic excitation Cascade interference Resonance
  • 相关文献

参考文献11

  • 1钟苏.关于水轮机抗振与防裂纹设计的建议[J].水力发电,2005,31(2):54-57. 被引量:14
  • 2NICOLET C, RUCHONNET N, AVELLAN F. One-dimensional modeling of rotor stator interaction in francis pump-turbine [C/CD]// 21st IAHR Symp, Switzerland, 2002.
  • 3HABAN V, KOUTNIK, J, POCHYIY, F, 1-D Mathematical model of high-frequency pressure ossilations induced by RSI including an influence of fluid second viscosity[C]//21st IAHR Symposium, Lausanne. 2002: 735-740.
  • 4庞立军,吕桂萍,钟苏,刘晶石.水轮机固定导叶的涡街模拟与振动分析[J].机械工程学报,2011,47(22):159-166. 被引量:28
  • 5王少波,刘元杰,梁醒培,赵明皞,王正伟.弹性板在粘性流体中的耦合振动分析[J].机械工程学报,2004,40(7):63-66. 被引量:17
  • 6肖若富,韦彩新,韩凤琴,陈秋.液固耦合对水轮机固定导叶振频振型的影响[J].华中科技大学学报(自然科学版),2001,29(4):85-87. 被引量:8
  • 7NICOLET C, ARPE J, AVELLAN E, Identification and modeling of pressure fluctuations of a francis turbine scale model at part load operation[C]// 22nd IAHR Symposimu on Hydraulic Machinery and Systems. Stockholm, Sweden. 2004: A07-1-17.
  • 8ANTON I, IOAN S. Computation of velocities and pressures on blade of pump-turbine runner[C/CD]//24th IAHR Symposimu on Hydraulic Machinery and Systems. Stockholm, Sweden. 2004.
  • 9钟苏,王德俊,吕桂萍.混流式水轮机转轮强度的设计优化[J].大电机技术,2004(5):36-39. 被引量:5
  • 10VALERO C, EGUSQUIZA E, LIANG Q, et al. Constraint effects on natural rrequencies in hydraulic turbine runners[C/CD]//24th IAHR Symposimu on Hydraulic Machinery and Systems. Stockholm, Sweden. 2004.

二级参考文献21

共引文献67

同被引文献100

引证文献13

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部