期刊文献+

出行者子停留语义推断模型框架 被引量:6

A model framework for inferring sub-stays semantic of traveler
下载PDF
导出
摘要 利用GPS轨迹宏观背景信息推断出行者出行目的方法,存在信息采集繁杂、实时处理不便等问题.提出了直接以GPS轨迹数据的语义信息为研究对象,着眼于挖掘GPS轨迹中出行者的微观活动信息,从而推断出行者出行目的的新算法.该算法通过辨识轨迹停留中的子停留,挖掘子停留的语义信息,并用活动点特征参数(时长、速度、转角)对信息进行量化,将特征参数值与在大量数据统计结果基础上构建的判别信息库进行比对,得出子停留活动类型,继而推断出行者的出行目的.真实采集的数据集验证了所提算法的有效性. There were several issues, such as complex information collecting and untimely infor- mation processing, in inferring the traveler's trip purpose using the macroscopic background infor- mation of GPS trajectory. In this paper, a new algorithm was suggested which focused on mining the semantic (microscopic activity information) from GPS trajectory data, so as to infer the trip purpose of traveler. Further, the new algorithm was implemented by identifying the sub-stops from trajectory stops, mining the semantic information of sub-stops, and quantifying the informa- tion through using the characteristic parameters of activity points (such as time, speed, corner). Additionally, the types of sub-stops activity was obtained by contrasting the characteristic param- eters" value to the knowledge database based on the statistical results of a large number of data. Last, the effectiveness of the proposed algorithm was verified by using real trajectory data.
作者 窦丽莎 曹凯
出处 《山东理工大学学报(自然科学版)》 CAS 2012年第6期17-22,共6页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(61074140) 山东省自然科学基金资助项目(ZR2010FM007)
关键词 智能交通 出行目的 语义挖掘 GPS轨迹数据 子停留 intelligent transportation deducing trip purpose semantics mining GPS trajectorydata sub-stop
  • 相关文献

参考文献12

  • 1Bohte W,Maat K.Deriving and validating trip purposes andtravel modes for multi-days GPS-based travel surveys:a Large-scale application in the netherlands[J].Transport Research PartC,2009,17(3):285-297.
  • 2Stopher P R.Collecting and processing data from mobile tech-nologies[C] //Transport Survey Methods:Keeping up with aChanging World.Bingley:Emerald Group Publishing Limited,2009:361-391.
  • 3Wolf J L.Using GPS data loggers to replace travel diaries in thecollection of travel data[D].Atlanta:Georgia Institute of Tech-nology,2000.
  • 4WOLF J L,Guensler R,Bachman W.Elimination of the traveldiary:Experiment to derive trip purpose from global positioningsystem travel data[J].Transportation Research Record:Jour-nal of the Transportation Research Board,2001,1 768:125-134.
  • 5Griffin T,Huang Y,Halverson R.Computerized trip classifica-tion of GPS data[C] //CITSA 2006-3rd International Conferenceon Cybernetics and Information Technology Systems and Appli-cations.Orlando:2006:20-23.
  • 6邓中伟,季民河.GPS轨迹中出行目的提取的一种智能算法[J].中国科技论文在线,2011,4(12):1064-1070.
  • 7Spaccapietra S,Parent C,Damiani M L,et al.A conceptualview on trajectories[J].Data and Knowledge Engineering,2008,65(1):126-146.
  • 8Moreno B,Times V C,Renso C,et al.Looking inside thestops of trajectories of moving objects[C] //In XI BrazilianSymposium on Geoinformatics.S^ao Paulo:2010:9-20.
  • 9Alvares L O,Bogomy V,Kuijpers B,et al.A Model for enric-hing rajectories with semantic geographical Information[C] //ACM-GIS′07.Washington:2007:1-8.
  • 10Palma T,Bogomy V,Kuijpers B,et al.A clustering based ap-proach for discovering interesting places in trajectories[C] //SAC08,ACM.Fortaleza:2008:863-868.

共引文献1

同被引文献64

  • 1张衡.马尔科夫链的一个应用[J].长春光学精密机械学院学报,1994,17(3):44-49. 被引量:11
  • 2邓中伟,季民河.GPS轨迹中出行目的提取的一种智能算法[J].中国科技论文在线,2011,4(12):1064-1070.
  • 3Alvares L O, Bogorny V, Kuijpers B, et al. A model for enriching trajectories with semantic geographical infor-mation[C]. Proceedings of the 15th Annual ACM Intema- tional Symposium on Advances in Geographic Informa- tion Systems, New York, USA, 2007.
  • 4Tietbohl A, Bogorny V, Kuijpers B. A clustering based ap- proach for discovering interesting places in trajectories [C]. SAC' 08 March 1620, Fortaleza, Cear'a, Brazil, 2008.
  • 5Zheng Y, Zhang L, Ma Z, et al. Recommending friends and locations based on individual location history[J]. ACM Transactions on the Web (TWEB), 2011,5( 1):3-9.
  • 6Alvares L O, Bogorny V, Kuijpers B, et al. Towards se- mantic trajectory knowledge discovery[J]. Data Mining and Knowledge Discovery, 2007.
  • 7Bogorny V, Kuijpers B and Alvares L O. ST-DMQL: A se- mantic trajectory data mining Query language[J]. Interna- tional Journal of Geographical Information Science, 2009, 23(10):245-1276.
  • 8Liu J, Wolfson O, Yin H. Extracting semantic location from outdoor positioning systems[C]. IEEE 7th Interna- tional Conference on Mobile Data Management, 2006:73- 73.
  • 9Josh Jia-Ching Ying, Wang-Chien Lee, Tz-Chiao Weng. Semantic trajectory mining for location prediction [C]. ACM SIGSPATIAL GIS 'll,Chicago, IL,USA, 2011.
  • 10Xie K, Deng K, Zhou X. From trajectories to activities: A spatio- temporal join approach[C]. Proceedings of the 2009 International Workshop on Location Based Social Networks, ACM, 2009:25-32.

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部