期刊文献+

超快冷条件下610MPa水电钢减量化工业试制 被引量:4

Industrial Trial Production of 610 MPa Hydropower Steel by Super-rapid Cooling Technology Based on Reduction of Alloying Elements
下载PDF
导出
摘要 为降低生产成本,对降低合金成分的610 MPa水电钢采用超快冷代替常规调质工艺进行了研究,确定了实际生产条件下TMCP-UFC的主要工艺参数。研究表明,合金减量后新工艺生产的610 MPa水电钢屈服强度大于590 MPa,抗拉强度大于660 MPa,-20℃CVN冲击吸收功达330 J以上,完全满足610 MPa水电钢的使用要求,达到了减量化生产及降低生产成本的目标。 In order to reduce production cost,the super-rapid cooling technology instead of conventional quenching and tempering technology which is applied in producing the 610 MPa hydropower steel with reducing adding content of alloying elements is studied and thus the main technical parameters on TMCP-UFC during actual production are determined.The studied results show that the values of yield strength,tensile strength and CVN impact energy at-20 ℃ of the 610 MPa hydropower steel produced by the new cooling technology when adding less content of alloying elements are more than 590 MPa,660 MPa and 330 J respectively.It is concluded that the 610 MPa hydroelectric steel can meet the requirements asked by working conditions and the goals of both reducing adding content of alloying elements and cutting down the production cost are realized.
出处 《鞍钢技术》 CAS 2013年第1期59-62,共4页 Angang Technology
关键词 水电钢 超快冷 减量化 组织性能 hydropower steel super-rapid cooling reduction property of microstructure
  • 相关文献

参考文献4

  • 1A. M. Guo, S. R. Li, J. Guo, et al. Effect of Zirconium addition on the impact toughness of the heat affected zone in a high strength low alloy pipeline steel [J]. Materials characterization, 2008, 59: 134-139.
  • 2温永红,唐荻,武会宾,郭振.F40级船板低温韧性机理[J].北京科技大学学报,2008,30(7):724-729. 被引量:38
  • 3Jonas J J, Weiss I. Effective of Precipitation on Recrystallization in Microalloyed Steels[J]. Met. Sci, 1979, 13(3-4) : 238-239.
  • 4Kwon O, Deardo A J. Interaction Between Recrystallization and Precipitation in Hot Deformed Microalloyed Steels [J]. Acta Metall. Mater, 1991, 39(4): 529.

二级参考文献11

  • 1李静,尚成嘉,贺信莱,杨颖,马玉璞.碳含量对高性能桥梁钢组织结构和性能的影响[J].钢铁,2006,41(12):64-69. 被引量:16
  • 2Czyryca E J, Kihl D P, DeNale R. Meeting the challenge of higher strength, lighter warships. AMPTIAC Q, 2003, 7(3): 63
  • 3Ohtani H, Okaguehi S, Fujisro Y, et al. Morphology and properties Of low-carbon Bainite. Metall Trans A, 1990, 21A: 877
  • 4Bhadeshia H K D H. Bainite in Steels. 2nd Ed. London: The Institute of Materials, 2001
  • 5Zhao M C, Shan Y Y, Xiao F R, et al. Acicular ferrite formation during hot plate rolling for pipeline steels. Mater Sci Technol, 2003, 19: 355
  • 6Zhao M C, Yang K, Shan Y Y. Comparison on strength and toughness behaviors of mieroalloyed pipeline steels with aeieular ferrite and ultrafine ferrite. Mater Lett, 2003, 57: 1496
  • 7Zhang X Z, Knott J F. Cleavage fracture in Bainitie and Martensitic microstructures. Acta Mater, 1999, 47(12): 3483
  • 8Qiao Y, Argon A S. Cleavage crack resistance of high angle grain boundaries in Fe-3% Si alloy. Mech Mater, 2003, 35: 313
  • 9Qiao Y, Argon A S. Cleavage crack-growth-resistance of grain boundaries in polycrystalline Fe-2% Si alloy: experiments and modeling. Mech Mater, 2003, 35:129
  • 10王华.我国造船钢板的生产现状及发展对策[J].轧钢,2001,18(5):31-33. 被引量:2

共引文献37

同被引文献62

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部