摘要
群G的一个子群H称为在G中s-置换嵌入,如果对于任意的素数p||H|,H的Sylowp-子群也是G的某个s-置换子群的Sylowp p-子群.称群G的子群H在G中弱s-置换嵌入,如果存在群G的次正规子群T和包含在H中的G的一个s-置换嵌入子群Hse,使得G=HT且H∩T≤Hse.利用弱s-置换嵌入子群的概念,研究了超可解群的构造,获得了有限群为p-超可解的一些充分条件.
A subgroup H of a finite group G is called s-permutably embedded in G if for each prime P|| H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-permutably subgroup of G. A subgroup H of a group G is said to be weakly s-permutably embedded in G if there is a subnormal subgroup T of G and an s-permutably embedded subgroup Hse of G is contained in H, such that G= HT and H∩ T≤Hse. Using this concept, the paper investigated the structure of p- supersolvable groups and obtained some sufficient conditions of p-supersolvability on finite groups.
出处
《杭州师范大学学报(自然科学版)》
CAS
2013年第1期65-69,共5页
Journal of Hangzhou Normal University(Natural Science Edition)
基金
国家自然科学基金项目(10961007
11161006)
广西自然科学基金项目(0991101
0991102)
广西教育厅科研基金项目(201012MS140)
广西高校人才资助计划(5070)
关键词
P-超可解群
弱s-置换嵌入
有限群
p-supersolvable groups
weakly s-permutably embedded subgroups
finite groups