期刊文献+

布置球窝的U型冷却通道传热性能研究 被引量:4

Heat Transfer Performance of U-Shaped Coolant Channel with Dimple Structure
下载PDF
导出
摘要 采用数值模拟方法研究了球窝结构对U型通道传热和阻力特性的影响,U型通道的一侧布置了球窝结构;采用SSTk-ω和大涡模拟(LES)湍流模型,对不同Re下的球窝强化传热性能进行了分析。结果表明:U型通道中第2列通道传热系数明显大于第1列通道,180°转弯角附近存在明显的二次流现象且传热系数较高;球窝结构的引入能明显强化U型通道的传热性能,球窝表面的平均Nu沿着流动方向逐渐减小,经过180°转弯角后急剧增大,球窝结构强化传热带来的压力损失非常小,几乎与光滑通道相当;RANS方法计算出的球窝表面Nu要大于LES方法的时均结果,相比LES方法,RANS方法判断的球窝腔内再附点更加靠近上游。 Numerical investigations were conducted to examine the heat transfer and friction performance of a U-shaped coolant channel with dimple structure on one surface of the channel. The SST k-ε turbulence model and the large eddy simulation (LES) were both adopted in the calculation to analyze the effect of dimple structure on the heat transfer performance at different Reynolds numbers. The results indicate that the heat transfer coefficient for the second row line in the U channel is much higher than that for the first row line, and the secondary flow exists near the 180°bend and the heat transfer rate is higher. Dimple structure can enhance the heat transfer process on the channel surface considerably. In the flow direction, the average Nu of the dimple surface decreases gradually, and it increases dramatically after the bend. Moreover, the pressure loss caused by dimple structure is small, almost approaching that of smooth channels. The Nu calculated by the SST model is slightly higher than that by the LES method, and the reattachment position obtained by the RANS method occurs earlier than that by the LES method.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第3期108-113,共6页 Journal of Xi'an Jiaotong University
基金 西安交通大学基本科研业务费资助项目(xjj20100127)
关键词 球窝 U型通道 大涡模拟 传热 dimple U-shaped channel large eddy simulation heat transfer
  • 相关文献

参考文献10

  • 1AFANASYEV V N, CHUDNOVSKY Y P, LEON- TIEV A I, et al. Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate [J]. Experimental Thermal and Fluid Science, 1993, 7 (1): 1-8.
  • 2LIGRANI P M, HARRISON J L, MAHMMOD G I, et al. Flow structure due to dimple depressions on a channel surface [J]. Physics of Fluid, 2001, 13 (11) : 3442-3451.
  • 3MAHMOOD G I, SABBAGH M Z, LIGRANI P M. Heat transfer in a channel with dimples and protru- sions on opposite walls [J] Journal of Thermophysics and Heat Transfer, 2001, 15(3): 275-283.
  • 4RAO Y, WAN C Y, ZANG S S. Comparisons of flow friction and heat transfer performance in rectangular channels with pin fin-dimple, pin fin and dimple ar- rays, GT2010-22442 [R]. New York, USA: ASME, 2010: 1-11.
  • 5蓝吉兵,谢永慧,张荻.微通道中球窝/球凸强化传热特性研究[J].西安交通大学学报,2011,45(7):89-94. 被引量:7
  • 6申仲旸,谢永慧,张荻,蓝吉兵.不同球窝/球凸结构的旋转矩形通道传热及阻力特性研究[J].西安交通大学学报,2011,45(11):52-57. 被引量:6
  • 7HAN J C. Recent studies in turbine blade cooling [J]. International Journal of Rotating Machinery, 2004, 10 (6) : 443-457.
  • 8SCHULER M, ZEHNDER F, WEIGAND B, et al. The effect of side wall mass extraction on pressure loss and heat transfer of a ribbed rectangular two-pass in- ternal cooling channel[J]. ASME Journal of Turbo- machinery, 2011, 133(2): 1-11.
  • 9BUNKER R S. The augmentation of internal blade tip- cap cooling by arrays of shaped pins [J]. ASME Jour- nal of Turbomachinery, 2008, 130(1): 1-8.
  • 10MAHMOOD G I, LIGRANI P M, CHEN K. Varia- ble property and temperature ratio effects on Nusselt numbers in a rectangular channel with 45 deg angled rib turbulators [J]. ASME Journal of Heat Transfer, 2003, 125(1): 769-778.

二级参考文献33

  • 1TUCKERMAN D B, PEASE R F W. High-perform- ance heat-sinking for VLSI [J]. IEEE Electron Device Letters, 1981, 2 (5):126-129.
  • 2PHUTI'HAVONG H P, ABDELGAWAD M. Micro- channel heat sinks: an overview of the stat of-the-art [J].Nanoscale and Microscale Thermophysical Engi- neering, 2004, 8 (3):183-205.
  • 3LEE P S, GARIMELLA S V, LIU D. Investigation of heat transfer in rectangular microchannels [J]. Inter- national Journal of Heat and Mass Transfer, 2005,48 (9) : 1688-1704.
  • 4LEE P S, GARIMELLA S V. Thermally developing flow and heat transfer in rectangular microchannels ofdifferent aspect ratios EJ~. International Journal of Heat and Mass Transfer, 2006, 49 (17/18): 3060- 3067.
  • 5SUI Y, TEO C J, LEE P S, et al. Fluid flow and heat transfer in wavy microchannels [J]. International Journal of Heat and Mass Transfer, 2010,53 (13/14) : 2760-2772.
  • 6FISCHER M, JURIC D, POULIKAKOS D. Large convective heat transfer enhancement in microchannels with a train of coflowing immiscible or colloidal drop- lets[J].Journal of Heat Transfer, 2010, 132(11): 112402.
  • 7AFANASYEV V N, CHUDNOVSKY Y P, LEON- TIEV A I, et al. Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate[J]. Experimental Thermal and Fluid Science, 1993, 7 (1):1-8.
  • 8MOON H K, O'CONNEL T, GLEZER B. Channel height effect on heat transfer and friction in a dimple passage [J]. Journal of Engineering for Gas Turbines and Power, 2000, 122 (2):307-313.
  • 9LIGRANI P M, HARRISON J L, MAHMMOD G I, et ak Flow structure due to dimple depressions on a channel surface [J]. Physics of Fluid, 2001,13 (11) : 3442-3451.
  • 10MAHMOOD G I, SABBAGH M Z, LIGRANI P M. Heat transfer in a channel with dimples and protru- sions on opposite walls [J]. Journal of Thermophysics and Heat Transfer, 2001, 15(3): 275-283.

共引文献10

同被引文献121

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部