期刊文献+

密集人群建模中的阈值训练 被引量:2

Threshold training in dense crowd modeling
下载PDF
导出
摘要 为了实现密集人群的跟踪采用一种建模的方法,而为了对密集人群视频数据进行建模,首先要对视频中存在的运动模式进行聚类,该方法采用了一种在线聚类的方式,而进行聚类的依据为KL阈值的大小。将视频中获取的第一个运动模式定义为初始运动模式,对于其后的运动模式,计算其与已存在运动模式间的KL阈值,判断该运动模式属于哪一类,进而完成模式的聚类。通过对于不同场景、不同条件下的视频进行聚类的分析,包括相同模式相邻位置、相同模式间隔位置、不同模式相邻位置、不同模式间隔位置以及不同模式间的混合训练,分析出KL值的特性,以及KL阈值的选择机制。 Using a modeling way to realize the tracking of dense crowded.In order to model for the video data of dense crowded,cluster the current existing motion pattern in the video firstly which uses a online method,according to the Kullback Leibler(KL) divergence.Regard the first obtained motion pattern as the initial motion pattern,for the next motion patterns,conclude the KL between them and the existed motion patterns,judge which motion pattern they belong to,then finish the clustering of the motion patterns.Through the clustering analysis in videos with different scenes and different conditions,including the same pattern in adjacent positions,the same pattern in spacing positions,different patterns in adjacent positions,different patterns in spacing positions,and the hybrid training between the different patterns,analyzing the characteristics of KL and the choosing mechanism of KL.
出处 《电子测量技术》 2013年第2期34-38,共5页 Electronic Measurement Technology
关键词 密集人群 建模 阈值训练 dense crowd modeling threshold train
  • 相关文献

参考文献12

  • 1KRATZ L, NISHINO K. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models[C] In CVPR,2009 : 1446-1453.
  • 2KRATZ L,NISHINO K. Factorizing scene albedo and depth from a single foggy image[C]. In IEEE Twelfth International Conference on Computer Vision ICCV' 09,2009 : 1701-1708.
  • 3KRATZ L, NISHINO K. Tracking pedestrians using local spatio-temporal motion patterns in extremely crowded scenes[ J]. In IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34 ( 5 ) 987-1002.
  • 4GRYN J M,WILDES R P,TSOTSOS J K. Detecting motion patterns via direction maps with application to surveillanee[J]. In IEEE Workshop on Motion and Video Computing,2005,113(2) :291-307.
  • 5DEE H, HOGG D. Detecting inexplicable behaviour[C]. In Proc. of British Macine Vision Conf,2004:477-486.
  • 6ANDRADE E L, BLUNSDEN S, FISHER R B. Modelling crowd scenes for event detection [ C]. International Conference on Pattern Recognition, 2006:175-178.
  • 7AIJ S, MUBARA K. Floor fields for tracking in high density crowd scenes[J]. Computer Vision,2008 : 1-14.
  • 8ADAM A,RIVLIN E,SHIMSHONI 1,et al. Robust real- time unusual event detection using multiple fixed-location monitors [ C]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2008,30 ( 3 ) : 555 - 560.
  • 9国辛纯,郭继昌,窦修全.基于HMM的语音信号情感识别研究[J].电子测量技术,2006,29(5):69-70. 被引量:10
  • 10XU R,WUNSCH D. Survey of clustering algorithm[J]. IEEE Transactions on Neural Networks, 2005, 16 ( 3 ) : 645 678.

二级参考文献19

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2张东波,王耀南.FCM聚类算法和粗糙集在医疗图像分割中的应用[J].仪器仪表学报,2006,27(12):1683-1687. 被引量:32
  • 3匡平,朱清新,陈旭东.基于FCM的快速模糊聚类算法研究[J].电子测量与仪器学报,2007,21(2):15-20. 被引量:9
  • 4XING H J,HU B G.An adaptive fuzzy c-means clustering-based mixtures of experts model for unlabeled data classification[J].Neurocomputing,2008,(71):1008-1021.
  • 5SIKKA,SINHA N,SINGH P K,et al.A fully automated algorithm under modified FCM framework for improved brain MR image segmentation[J].Magnetic Resonance Imaging,2009,(27):994-1004.
  • 6GORRIZ J M,RAMIREZ J,LANG E W,et al.Hard C-means clustering for voice activity detection[J].Speech communication,2006,(48):1638-1649.
  • 7CHUANG K S,TZENG H L,CHEN S W.Fuzzy C-means clustering with spatial information for image segmentation[J].Computerized Medical Imaging and Graphics,2006,(30):9-15.
  • 8AHMED M N,YAMANY S M,MOHAMED N.A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data[J].IEEE Trans.on Medical Imaging,2002,(21):193-199.
  • 9CHEN S C,ZHANG D Q.Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J].IEEE Trans.Systems Man Cybernet,B,2004,34 (4):1907-1916.
  • 10MA B,QU H Y,WONG H S.Kernel clustering-based discriminant analysis[J].Pattern Recognition,2007,(40):324-327.

共引文献1107

同被引文献23

  • 1JANNSCH D. Recommander Systems An Introduction[M]. United Kingdom: Cambridge University Press, 2011: 308-317.
  • 2项亮.推荐系统实践[M].北京:人民邮电出版社,2009:44-48.
  • 3JANNACH D. recornrnander systerrLs an introduction[M].United Kingdom: Cambridge University Press, 2011: 583-590.
  • 4SEGARANT.集体智慧编程[M].北京:电子工业出版社,2009:215-219.
  • 5MITCHELLT.机器学习[M].北京:电子工业出版社,2003:165-169.
  • 6I.I T, CHANG H, WANG M, et al. Crowded scene analysis: a survey[J]. IEEE Transactions on Circuits g>. Systems for Video Technology, 2015, x ( 3): 367-386.
  • 7AI.I S, SHAH M. A lagrangian particle dynamicsapproach for crowd flow segmentation and stahility analysis[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2007 : 1-6.
  • 8MEHRAN R, ()YAMA A, SHAH M. Abnormal crowd behavior detection using social force model[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.. 935-942.
  • 9ZHOU B, TANG X, WANG X. Coherent filtering: detecting coherent motions from crowd clutters [J]. Lecture Notes in Computer Science, 2012 : 857-871.
  • 10KRATZ L, NISHINO K. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models [C]. IEEE Conference on Computer Vision ,. Pattern Recognition. IEEE Computer Society, 2009 .. 1446-1453.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部