期刊文献+

西沙海域内潮与近惯性内波的相互作用 被引量:7

Interaction between internal tides and near-inertial waves at Xisha area
下载PDF
导出
摘要 通过使用西沙海域锚定潜标的测流数据,分析了距浣熊台风路径100km处海流受浣熊台风影响前后的动能谱、旋转谱和流剪切谱,从而阐明近惯性波,以及近惯性波与全日内潮波的相互作用机制.台风浣熊之后所引起的近惯性波主要在上250m较强,其能量是普通风场所引起的40倍.近惯性波的能量向下传播至450m左右,与此同时,强的近惯性流的剪切驱动着惯性波与全日内潮波之间的相互作用,从而产生强的近惯性波与全日内波的耦合波(f+D1).此三波耦合机制为Davies的波波相互作用理论提供了观测依据,同时,近惯性内波与全日内潮波之间的非线性相互作用,揭示了南海近惯性波能量耗散的一种机制. To study the behaviors of near-inertial waves and the physical mechanism of nonlinear interaction between near-inertial waves and diurnal internal tidal waves by employing the data collected by moored ADCP in the northwestern South China Sea, the authors analyzed kinetic energy spectra, rotary spectra and the spectra of horizontal component difference in vertical direction. The authors investigated the upper-ocean responses after Typhoon Neoguri in the South China Sea (SCS) in April, 2008, and found that the intense energy of near-inertial waves after Typhoon Neoguri was dominant in the upper 250 m,which is about 40 times of the average value of near-inertial waves induced by winds (excluding Typhoon Neoguri). The energy of nearinertial waves can propagate downward to ~450 m. Furthermore, the intense horizontal flow difference drives interaction between near-inertial waves and diurnal internal tidal waves, and (f+D1) were oberserved. The wave-wave couple mechanism provides observational evidence for theoretical results . The process of nonlinear interacting reveals a significant energy dissipation mechanism in SCS.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2013年第2期592-600,共9页 Chinese Journal of Geophysics
基金 国家重点基础研究发展计划项目(2013CB430303) 国家自然科学基金项目(U1033002 40976012 41276021)资助
关键词 近惯性内波 内潮 浣熊台风 南海西沙海域 Near-inertial motions, Internal tides, Typhoon Neoguri, Xisha area in the SCS
  • 相关文献

参考文献24

  • 1Webster F. Observations of inertial-period motions in the deep sea. Reviews of Geophysics, 1968, 6(4): 473-490. doi: 10.1029/RG006i004p00473.
  • 2Ekman V W. On the influence of the Earth's rotation on ocean-currents. Ark. Mat. Astron. Fys., 1905, 2(11): 1-52.
  • 3Brooks D A. The wake of hurricane Allen in the western Gulf of Mexico. J. Phys. Oceanogr., 1983, 13(1): 117-129.
  • 4Barron C N Jr, Vastano A C. Satellite observations of surface circulation in the northwestern Gulf of Mexico during March and April 1989. Cont. Shelf Res., 1994, 14(16): 607-627.
  • 5Gill A E. Atmosphere-Ocean Dynamics. San Diego: Academic Press, 1982: 662.
  • 6Munk W, Phillips N. Coherence and band structure of inertial motion in the sea. Rev. Geophys., 1968, 6(4): 447-472.
  • 7Kroll J. The propagation of wind-generated inertial oscillations from the surface into the deep ocean. J. Mar. Res., 1975, 33: 15-51.
  • 8Mihaly S F, Thomson R E, Rabinovich A B. Evidence for nonlinear interaction between internal waves of inertial and semidiurnal frequency. Geophys. Res. Lett., 1998, 25(8): 1205-1208.
  • 9van Haren H, Maas L, Zimmerman J T F, et al. Strong inertial currents and marginal internal wave stability in the central North Sea. Geophys. Res. Lett., 1999, 26(19): 2993-2996.
  • 10van Haren H, Maas L, Van Aken H. On the nature of internal wave spectra near a continental slope. Geophys. Res. Lett., 2002, 9(12): 1615, doi: 10.1029/2001GL014341.

同被引文献244

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部