期刊文献+

医学图像计算机辅助诊断数据平台研究 被引量:11

Computer-Aided Diagnosis Data Platform by Using Medical Imaging
下载PDF
导出
摘要 缺乏统一的数据存储模型及相关研究工具,是制约计算机辅助诊断研究中数据、算法等研究成果共享的最主要因素。针对计算机辅助诊断协同研究中的这一问题,提出并构建了用于医学图像计算机辅助诊断协同研究的数据平台。首先对计算机辅助诊断协同研究中的影像数据、过程数据以及"金标准"数据需求进行了分析,提出了统一的数据模型用于数据存储和表示,采用Oracle数据库实现;分析了病例获取、"金标准"标注、分割、特征提取以及算法评估等研究阶段的业务需求,设计并完成了相应的研究工具;最后基于DCMTK采用VC++编程实现了数据平台。数据平台应用于肺癌和脑胶质瘤辅助诊断研究,较好地解决了医学图像计算机辅助诊断研究过程中的数据存储、病例获取、标注、研究结果存储及评估问题,达到了共享研究成果的目的,对提高计算机辅助诊断研究有很好的促进作用。
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2013年第1期105-108,共4页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(81201151) 湖南省自然科学基金(12JJ6061) 湖南省科技计划项目(2012SK3185)
关键词 计算机辅助诊断 数据模型 数据平台 computer-aided diagnosis data model data platform
  • 相关文献

参考文献10

  • 1Henschke CI, Naidich DP, Yankelevitz OF, el al. Early lung cancer action project: initial findings on repeat screenings[J]. Cancer, 2001, 92( I): 153 -159.
  • 2Sahiner B, Chan HP, Hadjiiski LM, el al. Effect of CAD on radiologists' detection of lung nodules on thoracic ct scans: analysis of an observer performance study by nodule size[J]. Acad Radiol, 2009, 16( 12) :1518 - 1530.
  • 3Van GB, Ter Haar Romeny BM, Viergever MA. Computer-aided diagnosis in chest radiography: a survey[J]. IEEE Trans Med Imaging, 2001, 20(12) : 1228 -1241.
  • 4Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential[J]. Computerized Medical Imaging and Graphics, 2007 ,31 ( 4 ) : 198 - 21t.
  • 5Doi K. Current status and future potential of computer-aided diagnosis in medical imaging[J]. BritishJournal of Radiology, 2005, 78( I) :3 - 19.
  • 6郝欣,曹颖,夏顺仁.基于医学图像内容检索的计算机辅助乳腺X线影像诊断技术[J].中国生物医学工程学报,2009,28(6):922-930. 被引量:9
  • 7王伟胜,林红利.肺癌数据库的改进及其集成工具的设计实现[J].计算机工程,2011,37(1):63-64. 被引量:2
  • 8McNitt-Gray MF, Armato Iii SG, Meyer CR, el ol. The Lung Image Database Consortium (LIDC) Data Collection Process for Nodule Detection and Annotation[J]. Academic Radiology, 2007, 14(12) : 1464 -1474.
  • 9ACR/NEMA. Digital Imaging and Communication in Medicine[EB/OL]. http://dicom. nema. org/, 2011 - 08 - 1012012 - 04 -01.
  • 10OFFIS Computer Science Institute. DCMTK-DICOM Toolkit[EB/OL]. http://dicom.offis. del dcmtk. php. en, 20 II - 12 -01/2012 -03 -01.

二级参考文献54

  • 1Rangayyana RM, Ayresa FJ, Desautelsa JEL. A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs[J]. Journal of the Franklin Institute, 2007, 344(3 - 4) : 312- 348.
  • 2Muller H, Miehoux N, Bandon D, et al. A review of content-based image retrieval systems in medical applications-clinical benefits and future directions [ J]. International Journal of Medical Informaties, 2004, 73:1 - 23.
  • 3Sackett DL, Rosenberg WMC, Gray JAM, et al. Evidence based medicine: what it is and what it isn't[J]. BMJ, 1996, 312:71 - 72.
  • 4Sackett DL. Evidence-based medicine [ J ]. Seminars in Perinatology, 1997, 21(1): 3-5.
  • 5Feig SA, Galkin BM, Muir HD. Evaluation of breast microcalcification by means of optically magnified tissue specimen radiographs[A]. In: Brunner S, Langfeldt B, eds. Recent Results in Cancer Research[C]. Berlin: Springer, 1987. 111- 123.
  • 6Sickles EA. Breast calcifications: mammographic evaluation [ J ]. Radiology, 1986, 160: 289-293.
  • 7Nishikawa RM, Giger ML, Doi K, et al. Computer-aided detection of clustered microcalcifications on digital mammograms [ J]. Med Biol Eng Comput, 1995, 33(2) : 174 - 178.
  • 8McLoughlin KJ, Bones PJ, Karssemeijer N. Noise equalization for detection of microcalcification clusters in direct digital mammogram images[J]. IEEE Transactions on Medical Imaging, 2004, 23(3) : 313 - 320.
  • 9Gurcan MN, Yardimci Y, Cetin AE, et al. Detection of microcalcifications in mammograms using higher order statistics[J]. IEEE Signal Process Lett, 1997, 4(8) : 213 - 216.
  • 10Caputo B, Torre EL, Bouattour S, et al. A new kernel method for mieroealeifieation detection: Spin glass-Markov random fields [ J]. Stud Health Teehnol Inf, 2002, 90: 30- 34.

共引文献9

同被引文献99

  • 1房春兰,陈雷霆,郑睿,雷宇.基于灌注分析模型的计算机辅助诊断[J].计算机应用研究,2009,26(3):1189-1191. 被引量:1
  • 2李莉,木拉提.哈米提.医学影像数据分类方法研究综述[J].中国医学物理学杂志,2011,28(6):3007-3011. 被引量:9
  • 3Yuwei Zhang.Epidemiology of esophageal cancer[J].World Journal of Gastroenterology,2013,19(34):5598-5606. 被引量:81
  • 4叶俊.基于多期肝脏CT图像的计算机辅助诊断系统中关键技术的研究[D].上海:上海交通大学,2010.
  • 5王建伟.基于Snake模型的肝癌CT图像分割方法的研究[D].郑州:华北水利水电学院,2009.
  • 6DOI K.Computer-aided diagnosis in medical imaging:Historical review,current status and future potential[J].computer Medical Imaging Graph,2007,31(45):198-211.
  • 7Van Ginneken B,Ter Haar Romeny BM,Viergever MA.Computer-aided diagnosis in chest radiography:a survey[J].IEEE Trans Med Imaging,2001,20(12):1228-1241.
  • 8Kuhnigk JM,Dicken V,Bornemann L,et al.Morphological seg-mentation and partial volume analysis for volumetry of solid pulmo-nary lesions in thoracic CT scans[J].IEEE Trans Med Imaging,2006,25(4):417-434.
  • 9Yamamoto M,Ishida T,Kawashita I,et al.Development of coinput-er-aided diagnostic system for detection of lung nodules in three-dimensional computer tomography images[J].Nippon Hoshasen Gijutsu Gakkai Zasshi,2006,62(4):555-564.
  • 10Orsingher LI, Piccinini S, Crisi G. Differences in dynamic susceptibility contrast MR perfusion maps generated by different methods implemented in commercial software[J]. J Comput Assist Tomogr, 2014, 38(5):647-654.

引证文献11

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部