期刊文献+

水洗和酸洗蛭石体系中Mn^(2+)吸附的差异分析

Comparison of Mn^(2+) ion adsorption between water and acid rinsed vermiculite samples
下载PDF
导出
摘要 以水洗和酸洗蛭石为吸附剂,研究了固/液吸附体系中Mn2+的吸附特性。结果表明,水洗和酸洗蛭石体系Mn2+离子的吸附都存在明显的离子和吸附剂浓度效应,水洗蛭石体系Mn2+离子的去除率显著高于酸洗蛭石体系。在酸洗过程中,蛭石表面部分吸附位被H+离子占据,降低了阳离子的交换能力。酸洗蛭石的吸附容量低,在吸附过程中H+离子的解吸会降低出水溶液的pH值,不宜作为湿地基质填料。 The experiments were conducted to analyze the characteristics of Mn^2+ ion adsorption in liquid/solid systems by using water and acid rinsed vermiculite samples as the sorbents. Significant adsorbate and adsorbent effects were observed in the tested systems for both water and acid rinsed samples. The vermiculite samples rinsed by distilled water had much more higher Mn^2+ ion removal rate than the samples rinsed by diluted sulfuric acid. The adsorption capacity of vermiculite was lowered in the acid rinsing process due to occupation of large amounts of surface adsorption sites by H^+ ion. Acid rinsing not only caused an apparent reduction in Mn^2+ ion adsorption but also led to significant decreases in solution pH. The results obtained from the present tests indicate that the acid rinsing was not a suitable measure for preparation of vermiculite samples to be used as fillers in constructed wetlands.
出处 《中南林业科技大学学报》 CAS CSCD 北大核心 2012年第12期88-91,103,共5页 Journal of Central South University of Forestry & Technology
基金 国家环保部项目[200909066] 国家科技部项目[2012BAC09B03-4] 国家林业局项目[2010-43] 湖南省教育厅重点学科与重点实验室项目
关键词 离子吸附 蛭石 水洗 酸洗 Mn2+ ion adsorption vermiculite water rinsing acid rinsing Mn^2+
  • 相关文献

参考文献29

  • 1马纯照,林少华.凹凸棒石对水中Mn^(2+)的吸附特性研究[J].广东化工,2010,37(12):99-100. 被引量:3
  • 2Lee S M, Tiwari D, Choi K M, et aL Removal of Mn(II) from Aqueous Solutions Using Manganese-Coated Sand Samples[J]. Journal of Chemical and Engineering Data, 2009, 54(6):1823- 1828.
  • 3Sharma Y C, Uma, Singh S N, et al. Fly ash for the removal of Mn(II) from aqueous solutions and wastewaters[J].Chcmical Engineering Journal, 2007,132(1-3):319-323.
  • 4Tiwari D, Yu M R, Kim M N, et al. Potential application of manganesecoated sand in the removal of Mn(II) from aqueous solutions[J].Water Science and Technology, 2007,56(7): 153-160.
  • 5Kamal M, Ghaly A E, Mahmoud N, et al. Phytoaecumulation of heavy metals by aquatic plants[J].Environment International, 2004,29(8): 1029-1039.
  • 6Cheng S P, Grosse W, Karrenbrock F, et al. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals[J].Ecological Engineering, 2002, 18(3):317-325.
  • 7Zayed A, Growthaman S, Terry N. Phytoaccumulation of trace elements by wetland plants: I. Duckweed[J].Journal of Environmental Quality, 1998, 27(3):715-721.
  • 8Ye Z H,.Whiting S N, Lin Z Q, et al. Removal and distribution of iron, manganese, cobalt, and nikel within Pennsylvania constructed wetland treating coal combustion by-product leachate [J]. Journal of Environmental Quality, 2001,30(4): 1464-1473.
  • 9黄淦泉,杨昌凤,靳立军,郑桥飞.人-工湿地处理重金属Pb、Cd污水的机理探讨[J].应用生态学报,1993,4(4):456-459. 被引量:10
  • 10Xiaofu Wu.An Ion Adsorption Model Related to the Change in the Standard Chemical Potential of Adsorption Reactions[J]. Adsorption Science & Technology, 2011,29(8):747-768.

二级参考文献83

共引文献285

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部