摘要
考察了一个四阶两点边值问题的正解,它的非线性项含有变号的一阶导数.通过利用锥压缩与锥拉伸型的Krasnosel′skii不动点定理证明了几个存在性与多解性定理.特别地,只要非线性项的主要部分在某些有界集合上的高度适当,这个问题能够具有n个正解,其中n是一个任意的自然数.
The positive solutions are considered for a fourth-order two-point boundary value problem whose nonlinearity contains changing-sign first derivative. By applying the Krasnosellskii fixed point theorem of cone expansion-compression type,several existence and multiplicity theorems are proved. Particularly,the problem can have n positive solutions if the heights of principle part of nonlinearity are appropriate on some bounded sets. Here n is an arbitrary natural number.
出处
《滨州学院学报》
2012年第6期1-6,共6页
Journal of Binzhou University
基金
国家自然科学基金资助项目(11071109)
关键词
非线性常微分方程
边值问题
正解
存在性与多解性
nonlinear ordinary differential equation
boundary value problem
positive solution
existence
multiplicity