期刊文献+

非线性项含有变号一阶导数的四阶边值问题

A Fourth-Order Boundary Value Problem whose Nonlinearity Contains Changing-Sign First Derivative
下载PDF
导出
摘要 考察了一个四阶两点边值问题的正解,它的非线性项含有变号的一阶导数.通过利用锥压缩与锥拉伸型的Krasnosel′skii不动点定理证明了几个存在性与多解性定理.特别地,只要非线性项的主要部分在某些有界集合上的高度适当,这个问题能够具有n个正解,其中n是一个任意的自然数. The positive solutions are considered for a fourth-order two-point boundary value problem whose nonlinearity contains changing-sign first derivative. By applying the Krasnosellskii fixed point theorem of cone expansion-compression type,several existence and multiplicity theorems are proved. Particularly,the problem can have n positive solutions if the heights of principle part of nonlinearity are appropriate on some bounded sets. Here n is an arbitrary natural number.
作者 姚庆六
出处 《滨州学院学报》 2012年第6期1-6,共6页 Journal of Binzhou University
基金 国家自然科学基金资助项目(11071109)
关键词 非线性常微分方程 边值问题 正解 存在性与多解性 nonlinear ordinary differential equation boundary value problem positive solution existence multiplicity
  • 相关文献

参考文献12

  • 1Gupta C P. Existence and uniqueness theorems for the bending of an elastic beam equation[J]. Ap-plicable Analysis, 1988,26:289 - 304.
  • 2Agarwal R P. On fourth order boundary value problems arising in beam analysis [J], Differentialand Integral Equations, 1989,2 : 91 ~ 110.
  • 3Elgindi M B M,Guan Z. On the global solvability of a class of fourth-order nonlinear boundary val-ue problems[J]. Internat J Math Math Sci,1997,20:257 - 262.
  • 4Bai Z,Wang H. On positive solutions of some nonlinear fourth-order beam equations[J]. J Math A-nal Appl,2002,270:357 _ 368.
  • 5Xu Y,Liu L,Debnath L. A necessary and sufficient condition for the existence of positive solutionsof singular boundary value problems[J]. Appl Math Letters,2005,18:881 - 889.
  • 6姚庆六.一端简单支撑、另一端活动的非线性四阶边值问题的正解[J].华东理工大学学报(自然科学版),2006,32(1):118-121. 被引量:2
  • 7陆唤英.四阶奇异积分边值问题的非平凡解[J].滨州学院学报,2010,26(3):16-22. 被引量:1
  • 8Yao Q. Positive solutions of nonlinear elastic beam equation rigidly fastened on the left and simplysupported on the right[J]. Nonlinear Anal TMA,2008,69 : 1570 - 1580.
  • 9Cui Y,Zou Y. Existence and uniqueness theorems for fourth-order singular boundary value prob-lems[J]. Comput Math Appl,2009,58: 1449 - 1456.
  • 10Feng H,Ji D,Ge W. Existence and uniqueness of solutions for a fourth-order boundary valueproblem[J], Nonlinear Anal TMA,2009,70 :3561 - 3566.

二级参考文献25

  • 1姚庆六.一类弹性梁方程的正解存在性与多解性[J].山东大学学报(理学版),2004,39(5):64-67. 被引量:16
  • 2姚庆六,江涛.含一阶导数的半线性四阶边值问题的多重正解[J].湖南大学学报(自然科学版),2006,33(6):133-136. 被引量:2
  • 3孙经先.非线性泛函分析及其应用[M].北京:科学出版社.2007.
  • 4Han Wei,Liu Maoxing.Existence and uniqueness of nontrivial solution for a class of third-order nonlinear p-Laplacian m-point eigenvalue problems on time scales[J].Nonlinear Anal,2009,70:1877-1889.
  • 5Zhang Xinguang,Liu lishan.Nontrivial solution of third-order nonlinear eigenvalue problems(Ⅱ)[J].Appl Math Comput,2008,204:508-512.
  • 6Yang Zhilin.Existence of nontrivial solutions for a nonlinear Sturm-Liouville problem with integral boundary conditions[J].Nonlinear Anal,2008,68:216-225.
  • 7Zhang Xinguang,Liu Lishan.Nonyrivial solutions for higher order multi-point boundary value problems[J].Comput Math Appl,2008,56:861-873.
  • 8Cui Yujun,Zou Yumei.Nontrivial solutions of singular superlinear m-point boundary value problems[J].Appl Math Comput,2007,187:1256-1264.
  • 9Sun Jingxian,Zhang Guowei.Nontrivial solutions of singular sublinear Sturm-Liouville problems[J].J Math Anal Appl,2007,326:242-251.
  • 10Liu Lishan,Liu Bingmei,Wu Yonghong.Nontrivial solutions of m-point boundary value problems for singular second-order differential equations with a sign-changing nonlinear terms[J].J Comput Appl Math,2009,224:373-382.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部