期刊文献+

一种融合遮挡分割的多目标跟踪算法 被引量:1

A Multi-target Tracking Algorithm Combined with Occlusion Segmentation
下载PDF
导出
摘要 复杂环境下的多目标视频跟踪是计算机视觉领域的一个难点,有效处理目标间遮挡是解决多目标跟踪问题的关键。提出了一种融合遮挡分割的多目标跟踪算法,计算每个目标的光流速度概率直方图,反映其运动统计信息;综合使用外观、运动、颜色信息构造新的像素距离表达,借助分阶段分类思想及K均值聚类技术进行遮挡分割,得到准确的运动前景像素;在粒子滤波器跟踪框架下,使用概率外观模型进行多目标跟踪,更好地处理动态遮挡问题。实验表明,所提算法解决了复杂环境下的多目标跟踪问题。 Multi-target tracking in complex scenes is one of the most complicated problems in computer vision. Handling the occlusion between objects is the key issue in multi-target tracking. An occlusion segmentation-based algorithm is presented to track multiple people through complex situations which are captured by static monocular cameras. In the proposed algorithm, the probabilistic histogram of each object's optical flow vector is calculated, then this motion statistic information along with the color and appearance information is used to construct a new expression of pixel distance, finally stepwise classification and K-means clustering method are taken advantages of to accomplish occlusion segmentation. Object is handled by a particle filter-based tracking framework, and a probabilistic appearance model is used to find the best particle. Results show that the proposed approach can improve the performance of the original probabilistic appearance model and handle dynamic occlusion better.
机构地区 解放军
出处 《电讯技术》 北大核心 2013年第2期172-176,共5页 Telecommunication Engineering
关键词 多目标跟踪 遮挡分割 粒子滤波 概率外观 光流速度直方图 K均值聚类 multi-target tracking occlusion segmentation particle filter probabilistic appearance optical flow histogram K-means clustering
  • 相关文献

参考文献8

  • 1Reid D. An algoritlml for tracking multiple targets[J]. IEEE Trmlsactions on Automatic Control, 1979,24(6) :843 - 854.
  • 2Bar-Shalom Y, Scheffe M. Joint Probabilistic Data Associa- tion for Multiple Targets in Clutter[ C] //Proceedings of the Second International Conference on Information Sciences and Systems. Greece: IEEE, 1979:1 - 5.
  • 3Zhao T, Nevatia R. Tracking multiple humans in complex sit- uations[Jl. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2004,26(9) : 1208 - 1221.
  • 4Yang J, Vela P A, Shi Z, et al. Pro 'babihstic Multiple People Tracking through Complex Situations[ C]//Proceedings of the 11 th IEEE International Workshop on PETS. Miami: IEEE, 2009: 79 - 86.
  • 5Kristan M, Pers J, Kovacic S, et al. A local-motion-based probabilistic model for visual tracking[ J ]. Pattern Recogni- tion,2009,42(9) :2160 - 2168.
  • 6袁广林,薛模根,韩裕生,周浦城.基于自适应多特征融合的mean shift目标跟踪[J].计算机研究与发展,2010,47(9):1663-1671. 被引量:26
  • 7Wang Zhaowen, Yang Xiaokang, Xu Yi, et al. CamShift guid- ed particle filter for visual tracking[ J]. Pattern Recognition Letters, 2009,30(4) :407 - 413.
  • 8Isard M, Blake A. Condention-Conditional density propaga- tion for visual tracking[J]. International Journal of Computer Vision, 1998,29( 1 ) : 5 - 28.

二级参考文献13

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 3Comaniciu D,Ramesh V,Meer P.Real-time tracking of non-rigid objects using mean shift[C] //Proc of IEEE Conf on Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2000:142-149.
  • 4Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(5):564-575.
  • 5Collins R T.Mean-shift blob tracking through scale space[C] //Proc of IEEE Conf on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society,2003:234-241.
  • 6Birchfield S T,Rangarajan S.Spatiograms versus histograms for region-based tracking[C] //Proc of IEEE Conf on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society,2005:1158-1163.
  • 7Zhao Qi,Tao Hai.Object tracking using color correlogram[C] //Proc of IEEE Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.Piscataway,NJ:IEEE,2005:263-270.
  • 8Yang C,Duraiswanu R,Davis L.Efficient mean-shift tracking via a new similarity measure[C] //Proc of IEEE Conf on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society,2005:176-183.
  • 9Collins R T,Liu Yanxi,Leordeanu M.Online selection of discriminative tracking features[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(10):1631-1643.
  • 10Lin R S,Ross D,Lim J,et al.Adaptive discriminative generative model and its applications[C] //Proc of Conf on Neural Information Processing System.Cambridge,MA:MIT Press,2004:801-808.

共引文献25

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部