期刊文献+

基于SVM的文字商标检测 被引量:4

Text Trademark Detection Based on the SVM
下载PDF
导出
摘要 随着电子商务的兴起,越来越多的不法厂商和店家常常会有商标侵权事件,而商标中文字型商标占了很大的比重,从图片中查找出文字商标可以借鉴一些文字检测的方法。但是相对于后期加在图片上的文字来说,检测文字商标更为复杂,它是处于各种不同场景图片中,常常出现在复杂的背景上,其大小、方向、颜色都是千变万化的。本文提出了一种新的文字商标检测的算法,本算法结合了基于边缘检测的粗定位模版和SVM分类器的优势,相比于传统方法,本文提出的方法提高了文字商标检测的准确率,同时由于使用了二级过滤方法,所以算法的时间复杂度比单纯利用机器学习的方法有了很大提高。 With the development of e-commerce, more and more illegal manufactures and shopkeepers often have trademark infringement events, and a large part of trademarks are text trademarks. So finding out the text trademarks from images can be reference for some methods of text detection. But in contrast to the words added to the picture later, the detection of text trademarks are more complicated. Because they are in all kinds of scene pictures and the background are more complicated. Furthermore, their size, direction and colors are ever-changing. This paper proposes a new algorithm of text trademark detection, which combines the rough text location based on multi- scale edge detection and the advantages of SVM classifier. Compared with the traditional methods, the proposed algorithm can improves the accuracy of text trademark detection. Because of using secondary filter method, the time complexity has greatly improved than using machine learning only.
作者 陈艳琴
出处 《软件》 2013年第1期149-151,170,共4页 Software
关键词 人工智能 文字商标检测 机器学习 边缘检测 Artificial Intelligence Text Trademarks Detection Machine Learning Edge Detection
  • 相关文献

参考文献9

  • 1于瑛英,薛毅,池宏.一种提高SVM训练速度的新方法[J].数理统计与管理,2008,27(3):409-417. 被引量:3
  • 2张小琳.图像边缘检测技术综述[J].高能量密度物理,2007(1):37-40. 被引量:70
  • 3Shaoqing Li, Chuang Zhang, Zhi Qing, et al. Using adaboost and SIFT for capturing Chinese text content of natural scene image in mobile communication network[J] Progress in Informafics and Computing, 2010, 1(2):906- 910.
  • 4Anoual H, El Fkihi S, Jilbab A, et al. New approach based on texture and geometric features for text detection[J] Image and Signal Processing, 2010:157-164.
  • 5Lee J J, Lee P H, Lee S W, et al. Adaboost for text detection in natural scene[J] Document Analysis and Recognition, 2011 .. 429-434.
  • 6Kleban J, Xie X, Ma W Y, Spatial pyramid mining for logo detection in natural scenes[J] Multimedia and Expo, 2008:1077-1080.
  • 7Sushma J, Padmaja M, Text detection in color images[J] Intelligent Agent & Multi-Agent Systems, 2009.. 1-6.
  • 8Tran H, Lux A, Nguyen H, A novel approach for text detection in images using structural features[J], Pattern Recognition and Data Mining, 2005:627-635.
  • 9Wagstaff K, Cardie C, Rogers S, et al. Constrained k-means clustering with background knowledge[J], Machine Learning-International workshop then conference, 2001 : 577-584.

二级参考文献6

  • 1V. Vapnik. The Nature of statistical learning theory[J]. New York: Springer-Verlag. 1995: 45-98.
  • 2Boser Bernhard E, Guyon Isabelle M, Vapnik Vladimir N. A training algorithm for optimal margin classifiers [EB/OL]. http://portal.acm.org/ft_gateway.cfm?id=130401&type=pdf.
  • 3John. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines [A]. In Advances in kernel methods-support vector learning [C]. Massachusetts: The MIT Press, 1999: 185-308.
  • 4Yuh-Jye Lee and Olvi L. Mangasarian. RSVM: Reduced support vector machines. http:/ /www.siam.org/meetings/SDMO1/pdf/sdm01_13.pdf.
  • 5Haixin Ke and Xuegong Zhang. Editing support vector machines. IEEE 2001.
  • 6http://www.kernel-machines.org/.

共引文献71

同被引文献85

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部